
����������	
����

��
�������������	�
������
�������

��������
������ �
�
�
�
����!���� ���"���
��

" �����

#$%&###'����
�
(���)���!%"�
�����������*+����
����

��������

	�
�������

����������

���������

Michael Zech
From relational to object-

oriented data structures 34
Since most developers today must con-
sider existing data, converting relational
data structures to an object-oriented
approach has significant meaning for
those converting to Jasmine. This article
discusses conversion considerations,
beginning with the well-known and loved
DBF files.

Michael Zech
Jasmine Script Utility 40
The Jasmine Script Utility is intended to
support developers during the conversion
of existing data structures to an object-ori-
ented class design.

Traps, Tips n’ Tricks 41

Erik Wynn

eMail in Ihrer Applikation 43

This paper describes how to add auto-
matic email capabilities to your applica-
tion. SMTP will be presented, and we will
discuss how to build an ActiveX server
which communicates with SMTP servers.

Ivo Wessel
CA-VO:Projekt “VO-SDT” 51
After the article on SplitWindows, ListView
and TreeView controls in the last issue,
this article is dedicated to advanced tech-
niques for programming of the two later-
mentioned control classes. These play
an even larger role in modern applica-
tions, but they also must be correctly
implemented, so that they demonstrate
their complete efficiency and usefulness.

Ralf Saborowski
OLE Compound Storage 4
OLE Structured Storage or “How to keep
all DBFs and indexes of an application
within one file”

Jan V. Balek
E-Mails with FlagShip 9
Everyone wants the ability to send individ-
ual and group eMail directly from the
existing database programs..

Uwe Holz
CGI-Applikationen for Linux 12
More and more developers of Internet
applications are confronted by their cus-
tomers with the demand for a Linux ver-
sion. That is, since Linux is a modified
version of UNIX, this is the sturdiest plat-
form for Internet servers

Georg S. Lorrig
Xbase++ SL 2 –

first taste 19
Shortly before this issue was sent to the
press, Service Level 2 for Xbase++ was
released. It brings in new functionality as
well as substantial performance gains.

Dieter Stelzner
Web Application Adaptor

(2. Teil) 21
The WAA of Alaska provides classes to
create dynamic HTML pages with forms
and edit controls.

Rod da Silva
Undocumented VO 27
5333, Heeelllllppp

Dieter Crispien

Cool new Menues(2) 32
In this issue, I want to demonstrate how
one can display both text and bitmaps in
a menu entry. One is then fully prepared
for the fashionable innovations, which
Office97 has made familiar.

INHALTSVERZEICHNIS

Dear Reader

For this issue of "Software Development Techniques", we have
reworked the layout of the magazine to fit changing times. We
hope that you will find SDT easier read because of these chan-
ges. At this point, I would like to thank our GUI Pope, Ivo
Wessel, who, through long and heart-felt discussions, convinced
us of the need for some changes.

Keyword Changes:
Clandestinely, quietly, service releases of CA-Visual Objects are
still appearing. While other world-shaking companies of every
size and color sing an anthem with every minor product adjust-
ment, Computer Associates goes their own way. A quick mes-
sage in their new WEB-Forum announced the availability of the
2.5a1 patch, which can be downloaded from
ftp://ftp.cai.com/pub/vo.

Keyword Web-Forum:
Controversially, Computer Associates cut their association with
CompuServe last year. Many of our readers suddenly lost their
most important source of information and support.. Computer
Associates reacted to the situation and setup a peer-to-peer solu-
tion. Aware users threw themselves on this new forum, which
is quite easily reached from the Internet, and the culture shock
began.

Say what one will about CompuServe, its organization and
accessibility were extremely good when compared with this
somewhat exotic solution, which Computer Associates has cre-
ated for us. VOCA attacked this problem immediately, and as of
December had begun development of the CAYMan OffLine
Reader. The first release now lies behind us, and VOCA quite
excited about how the users are responding to it.
This issue's CD includes a free 30-day trial version. With
Computer Associates-World and C.A.R.E. approaching, we
wanted to report our new SDT concept and the development of
CAYMan.

Finally, heart-felt congratulations to Mr. Jürgen Goschke, as
the winner of the trip to CA-World.

Please, enjoy reading your SDT,
Meinhard Schnoor-Matriciani
[VOCA GmbH, Germany]

INHALTSVERZEICHNIS
Preview 2/2000

SQL
ClassMate hands on
TreeListView
CAYMan Techniques
Windows-Filesystem
Clipper

Impressum

Editors and Publisher:
VOCA GmbH
Grossviehbergstr. 48A
91213 Hersbruck
Germany
Tel.: +49-9151-8181-41
Fax: +49-151-8181-42

Http://www.vocager.de

Authors 1/2000:
Jan V. Balek
Dieter Crispien
Uwe Holz
Georg S. Lorrig
Ralf Saborowski
Rod da Silva
Dieter Stelzner
Ivo Wessel
Erik Wynn
Michael Zech

Titlepage:
C. Leithold
N. Pfleger
[WAM Dortmund]

Ralf Saborowski

OLE Structured Storage or “How to keep
all DBFs and indexes of an application wit-
hin one file”

OLE Structured Storage with CA-Visual
Objects was not given much attention
until now. It is a very good example of
native COM programming with CA-
Visual Objects and it opens quite intere-
sting programming solutions. This arti-
cle explains the concept behind OLE
Structured Storage and has an example
of how to ‘twist’ the CA-Visual Objects
RDDs to make them store database files
in OLE Compound Files. A Compound
File Viewer that enables to view the
structure of OLE Compound Files will be
presented.

There are actually two motives behind this article. On one hand
I wanted to be able to keep all DBF and index files of an appli-
cation in one large file since the time I was a Clipper developer,
thus for more then ten years. The mere sight of a directory with
dozens of DBF and NTX files (composite indexes were not
available with Clipper Summer 87) felt like cold shower running
down my back. This accumulation of files somehow appeared
more vulnerable to me than a single file. First it was possible to
overlook a missing file during application backup or transfer.
Second end users could easily open and manipulate files with
tools like dBase and even corrupt data.

The concept of OLE Structured Storage exists since the
introduction of OLE 2.0 in Windows 3.1. What hides behind
this term? One of the central characteristics of OLE 2.0 is the
ability to embed documents in other documents. For example
Excel table can be embedded in a Word document. The Excel
table in turn can contain further documents like sound files or a
complete PowerPoint presentation.

This kind of complex document (also called Compound
Document) organization required a new persistent storage
mechanism. You can hardly expect the user to keep track of all
individual embedded document components to safely transfer
the document. We only deal with embedded documents here,
you still have to do this with the so-called Linked documents.
The goal was to keep all components of a complex document in
a single file and leave the format of the embedded files intact
whenever possible. This is how the idea of OLE Compound
Files was born. Compound files are files, which in principle can
again contain a complete hierarchical file system.

OLE Compound files are already used in CA-Visual Objects.
The project catalog %CavoDir%\Projects\Project.vo is an OLE
Compound File, which can be easily proven with the Compound
File Viewer that will be introduced later in this article. My per-
sonal interest in the concept of OLE Structured Storage and my
long-term desire to place DBFs and index files in a single file
were the incentives to solve this problem at once. And then,
Elvis was nagging me, well, you know.

Working with Compound files
The functions to create and manipulate Compound files are con-
tained in dynamic link libraries Ole2.dll and Storage.dll.
Functions to create and open a Compound File are
StgCreateDocfile() and StgOpenstorage(). Both functions expect
a set of parameters including the name of the Compound File.
A typical call to create a new Compound File looks as follows:

The first parameter is the name of the file to be created. Note
that this parameter has to be passed not as a character string or
PSZ but as a pointer to a wide character (Unicode) string. This
applies to all file names used with Compound Files. Runtime
functions Multi2Wide() and Wide2Multi() in the system library
provide conversion between wide character (Unicode) and single
character strings. The second parameter specifies the mode, in
which the created file has to be opened. In this case we open it
for exclusive read and write access. Compound files can also be
opened for shared access and in a so-called transaction mode.
The last two modes are hardly recommended with the current
implementation of the Storage.dll. The Compound File specifi-
cation allows shared file access, however with the current imple-
mentation it is only possible to open components of a
Compound File exclusively, even if the Compound File itself is
opened in shared mode. So in reality a Compound File opened
in shared mode will only permit several users to have simultane-
ous exclusive access to different components within the file.

If a Compound File is opened for shared access, the trans-
action mode can be indicated in addition. It allows to roll back
to the initial state after a set of operations. Since contents of the
Compound File are copied to a TEMP directory during transac-
tions and there are no mechanisms for conflict recovery during
a commit, this mode has little practical importance.

The third parameter of the StgCreateDocFILE() call is reser-
ved and set to a NULL_POINTER. The fourth parameter final-
ly takes us closer to the true nature of the storage API. It is pas-
sed by reference and receives a COM interface for the created
storage object if the function call was successful (return value is
S_OK = 0). All further access to the compound file has to be
done through this COM interface.

The function to open an existing compound file looks simi-
lar:

The first parameter is again the file name as a wide character
string. The second parameter points to a previous opening of a
root storage object and can be passed in addition to the file
name. The third parameter is the desired access mode, the fourth
parameter permits to filter out certain elements within the stora-
ge and the fifth parameter is reserved. Again a COM interface
is returned by reference through the sixth parameter.

Interfaces, interfaces, interfaces...

You should be already familiar with the basics of COM pro-
gramming, so I don’t have to deal with it here. A detailed paper

4 Software Development Techniques 01/2000

StgCreateDocFile(;
PTR(_CAST,; Multi2Wide(cStorage)),;
_OR(STGM_READWRITE,STGM_SHARE_EXCLUSIVE),;
0,;
@pStg)

StgOpenStorage(Multi2Wide(cStorage),;
NULL_PTR, _OR(STGM_READWRITE,STGM_SHARE_EXCLUSIVE),;
NULL, 0, @pStg)

about native COM programming with CA-Visual Objects 2.x
can be found in [1].

Both StgCreateDocFile() and StgOpenstorage() return so-
called IStorage interfaces. These represents the ‘main directory’
of the Compound File. However with Compound Files storage
objects are used instead of directories. A root directory is accor-
dingly called a root storage object. Files in a compound file are
called stream objects or streams. The IStorage is defined in CA-
Visual Objects as follows:

You can easily recognize methods for creating, deleting and rena-
ming of storage objects and streams. In detail these methods ful-
fill the following tasks:

IStorage:Createstream()
Creates and opens a new stream to which data can be written like
to a normal file. After a successful execution Createstream()
returns an IStream interface.

IStorage:Openstream()
Opens an existing stream. As mentioned before streams can only
be opened exclusively. An attempt to open a stream for shared
access will return an error code. A successful execution of
Openstream() returns an IStream interface.

IStorage:Createstorage()
Creates and opens a new storage object nested within this stora-
ge object. This procedure is somewhat similar to the creation of
a subdirectory in a file system. Successful execution of
Createstream() returns a new IStorage interface.

IStorage:Openstorage()
Opens an existing nested storage object. Like streams nested sto-
rage objects can be opened only exclusively. A successful
Openstream() execution returns an IStorage interface.

IStorage:CopyTo()
Copies the entire contents of an open storage object including
streams and nested storage objects to another storage object.

IStorage:MoveElementTo
Copies or moves a nested storage object or stream from this sto-
rage objects to another storage object.

IStorage:Commit()
Ensures that changes made to a storage object opened in the
transaction mode are permanent.

IStorage:Revert()
Discards changes made to a storage object opened in the trans-
action mode.

IStorage:EnumElements()
Enumerates all streams and nested storage objects of a storage
object. An IEnumSTATSTG interface is returned after success-
ful execution.

IStorage:DestroyElement()
Removes the specified storage object or stream from this stora-
ge object. A storage object can be successfully deleted only if it
does not contain any more streams or nested storage objects.

IStorage:RenameElement()
Renames a stream or a nested storage object.

IStorage:SetElementTimes()
Allows setting of the time values for the creation, last access, and
last change of a stream or a nested storage object.

IStorage:SetClass()
Assigns the specified CLSID to the storage object.

IStorage:SetStateBits()
This method is documented as reserved and should not be used
for the time being.

IStorage:Stat_()
Provides status information (name, date, etc...) for the current
storage object.
As already mentioned, access to streams is obtained through the
IStream interface, which inherits not from IUnknown direct, but
from ISequentialStream.

These methods support operations necessary for handling stre-
ams (files), as for example read, write and search.

IStream:Read()
Is used to read data from a stream.

IStream:Write()
Writes data to a stream.

IStream:Seek()
Streams have a seek pointer just like files. This function changes
the seek pointer position so subsequent reads and writes can take
place at a different locations in the stream.

5Software Development Techniques 01/2000

CLASS IStorage INHERIT MyIUnknown
DECLARE METHOD CreateStream
DECLARE METHOD OpenStream
DECLARE METHOD CreateStorage
DECLARE METHOD OpenStorage
DECLARE METHOD CopyTo
DECLARE METHOD MoveElementTo
DECLARE METHOD Commit
DECLARE METHOD Revert
DECLARE METHOD EnumElements
DECLARE METHOD DestroyElement
DECLARE METHOD RenameElement
DECLARE METHOD SetElementTimes
DECLARE METHOD SetClass
DECLARE METHOD SetStateBits
DECLARE METHOD Stat_

CLASS ISequentialStream INHERIT MyIUnknown
DECLARE METHOD Read
DECLARE METHOD Write

CLASS IStream INHERIT ISequentialStream
DECLARE METHOD Seek
DECLARE METHOD SetSize
DECLARE METHOD CopyTo
DECLARE METHOD Commit
DECLARE METHOD Revert
DECLARE METHOD LockRegion
DECLARE METHOD UnlockRegion
DECLARE METHOD Stat_
DECLARE METHOD Clone

IStream:SetSize()
Changes the size of the stream object.

IStream:CopyTo()
Copies a specified number of bytes from the current seek poin-
ter in the stream to the current seek pointer in another stream.

IStream:Commit()
Ensures that changes made to a stream open in transaction
mode are permanent.

IStream:Revert()
Discards changes made to a stream opened in the transaction
mode.

IStream:LockRegion()
Restricts access to a specified range within a stream. Since the
current implementation of Compound files supports only exclu-
sive access to streams, this function has no practical value.

IStream:UnlockRegion()
Removes a lock set with IStream:LockRegion(). Since the current
implementation of Compound files supports only exclusive
access to streams, this function is likewise irrelevant.

IStream:Stat_()
Returns status information (name, date, etc..) for the current
stream.

IStream:Clone()
Creates a new stream object with its own seek pointer that refe-
rences the same bytes as the original stream.
Another interface you will need to work with Compound files is
IEnumSTATSTG. It is returned by Istorage:EnumElements()
and is used to run through all nested storage objects and stre-
ams:

An IEnumSTATSTG interface represents an enumeration of all
streams and nested storage objects. Its pointer indicates the cur-
rent item. When the enumeration is created the pointer is set on
the first item in the collection.

IEnumSTATSTG:Next()
Returns the specified number of streams or nested storage
objects in the enumeration. The requested information is retur-
ned in STATSTG structures. Keep in mind that the storage
object or stream name is returned as a wide character string
(Unicode) and it is the callers responsibility to explicitly allocate
and free memory for this string by using CoTaskMemFree().

IEnumSTATSTG:Skip()
Skips one or more items in the enumeration.

IEnumSTATSTG:Reset()
Resets the enumeration sequence to the first item.

IEnumSTATSTG:Clone()
Creates another IEnumSTATSTG interface that is an exact copy
of the first.

In practice

All interface definitions including method declarations are inclu-
ded in the library you can import from the SDT-CD as stora-
ge.aef. Armed with this information we can write the first pro-
gram that uses Structured File Storage:

To keep the size of the code to minimum it comes without
error handling. The program creates a compound file with
the name ‘test.dfl’ (the extension DFL stands for docu-
ment file). It then creates a stream named “Test.txt” in the
root storage and writes the text “Hello World! “ into the
stream. After the stream and storage are closed they are
opened in the read only mode and the text from the stre-
am is read and displayed.

Repeated Istorage:Createstream() and Istorage:Create-
storage() calls allow to create as many storage objects and stre-
ams as desired including complex hierarchies within compound
files. We are getting closer to our goal to store all DBF and index
files of an application in a single file.

Poor Man’s Doc View

How can we know that the file built in the preceding example
really has the intended structure? We cannot look inside of com-
pound files, like it is possible with directories in the Windows

6 Software Development Techniques 01/2000

FUNCTION Start()
LOCAL cb AS DWORD
LOCAL c AS STRING
LOCAL pStg AS IStorage
LOCAL pStm AS IStream

// Create new Compound File
StgCreateDocFile(PTR(_CAST,Multi2Wide(“test.dfl”)),;

_OR(STGM_CREATE,STGM_READWRITE,;
STGM_SHARE_EXCLUSIVE),0, @pStg)

// Create new stream
pStg:CreateStream(Multi2Wide(“test.txt”),;
_OR(STGM_CREATE,STGM_READWRITE,;
STGM_SHARE_EXCLUSIVE),0, 0, @pStm)

// Write to stream
pStm:Write(PTR(_CAST, “Hello World!”), 13,@cb)
// Close stream
pStm:Release()

// Close Compound File
pStg:Release()

// Open Compound File
StgOpenStorage(Multi2Wide(“test.dfl”),NULL_PTR,;
_OR(STGM_READ,STGM_SHARE_EXCLUSIVE),NULL,0,@pStg)

pStg:OpenStream(Multi2Wide(“test.txt”),0,
_OR(STGM_READ, STGM_SHARE_EXCLUSIVE),0, @pStm)
// Read from stream
c:=Buffer(100)
pStm:Read(PTR(_CAST, c), 100, @cb)
c := Left(c, cb-1)
? c
pStm:Release()
pStg:Release()
WAIT

CLASS IEnumSTATSTG INHERIT MyIUnknown
DECLARE METHOD NEXT_
DECLARE METHOD Skip
DECLARE METHOD Reset
DECLARE METHOD Clone

Explorer. Originally I wanted to refer to a tool named
DocView.exe, which comes with Microsoft Visual C++. This
tool can open compound files and display nested storage objects
and streams in a Tree View. Stream contents can be viewed in
hexadecimal representation. Then I thought that after all good
developers make their own tools and the result was the “Poor
man’s Doc View.AEF” you can find on the companion CD. This
application is a pretty good Compound File viewer. You can use
it to view the file built in the previous example as well as many
interesting files, for example Word documents, Excel tables and
CA-Visual Objects MDF files. Simple Microsoft Office docu-
ments contain only few streams in the root storage, however
once you add some macros and perhaps embed another OLE
object it starts to look a lot more interesting (see illustration 1).
Embedded objects like an Excel table are stored in the Object
Pool storage in more or less their original form.

Fig. 1: A Word document with macros and inserted Excel table in the Doc file viewer

To view the contents of a stream in a Hex editor double-click on
a stream icon. Caution is required, because the window, which
opens, is a Hex editor and all changes in the window will be writ-
ten back into the stream without confirmation request. This way
a Word document can be corrupted and made useless in an
instance.

You can rename storage objects and streams in the viewer via
single click of the left mouse button and delete whole branches
of directories with the Del key. No request to confirm deletion
will follow so caution is required!

Compound RDD storage

The problem that we naturally face is that to replace all file ope-
rations by IStorage and Istream calls, we need the RDD source
code. Strictly speaking that is not much of a problem for me, but
nevertheless I wanted to develop a solution, which works with
existing RDDs.

I wasn’t involved with the details of the RDD system for a
long time, however I still remembered that all file operations are
performed via functions of the runtime library
(CAVORT20.DLL). I assumed that the runtime functions are
made available to the RDD through an array of function poin-
ters similar to a Vtable. In that case file operations could be easi-
ly rerouted by replacing the relevant function pointers with poin-
ters to own routines that make calls to the IStorage/IStream
interfaces. Unfortunately a look at the relevant macros indicated
that instead of using an array of function pointers, RDD uses
direct runtime calls. These are in essence hard-wired once the
program is loaded into the memory.

Runtime functions used in the RDD system for file opera-
tions, are based Win32 API calls like CreateFile(),
ReadFile(), WriteFile(). This led to the idea to replace the
Win32 API functions in runtime RDD with own routines.
The result would be that not only RDD function calls, but
also FCreate(), FOpen() and even the VOERROR.LOG
would be rerouted into a single compound file.

Replacing of imported functions like I described it above, is
an easy exercise for programmers familiar with design of linkers.
When the application is loaded Windows gets hold of one fixed
address for each import function in the import table. All calls to
a runtime function within a module (an EXE or DLL) are pas-
sed indirectly through these fixed import addresses. Replacing
addresses in the import table with addresses of own routines
would reroute runtime function calls to own routines. Of cour-
se, these new routines should have same calling semantics as the
original functions. I call this technology subclassing of DLLs.
Indirect calls to DLL routines can be easily traced down with the
GoVest debugger [2] in the single step mode.

The file “Storage Rdd.aef ” on the companion CD contains
a library, with all necessary logic for subclassing of the runtime
DLL and some routines that allow to reroute file read/write ope-
rations to a compound file. The following Win32 API functions
are replaced:

CloseHandle() CreateDirectory()
CreateFile() DeleteFile()
FlushFileBuffers() LockFile()
ReadFile() RemoveDirectory()
SetCurrentDirectory() SetFilePointer()
UnlockFile() WriteFile()

It is important that these functions are only replaced for the
Runtime DLL. Calls made to these functions from the applica-
tion (EXE) or from other DLLs should still go through the
Win32 API.

Before you continue reading, import the “Compound DBF
test.AEF” from the companion CD. Build and run the applica-
tion and view the produced file Mystorage.dfl in the Compound
File Viewer. Then take a look at the start function of the test
program. The start function consists mostly of classic Clipper
style code to create and index DBF files. The actual creation of
the DBF files takes place in the function C_DEMO() that crea-
tes a DBF file with 100 records in a typical Clipper manner.
Indexes using DBFNTX or DBFCDX are built in the Start()
function itself.

The program does not generate DBF and index files as files
in the file system, as you would expect from this code. Instead
compound file MyStorage.dfl is created. Once you examine it in
the Compound Document File Viewer you will find that DBF
and index files are saved as streams within a single compound
file (see illustration 2).

The detour is handled by an instance of the class
StorageRDD:

o: = storageRDD{ }

Once it is initialized all functions listed above will reroute their
input/output to a single compound file named Mystorage.dfl.

7Software Development Techniques 01/2000

The name of the compound file can be passed to the
StorageRDD class Init() method as the second parameter. The
StorageRDD object is system-wide, only one StorageRDD
object can exist at a time. An attempt to create a new object will
automatically destroy the existing one.

The logic for the subclassing of the runtime DLL is in the
Init() method of the StorageRDD class. It can be easily modified
to subclass any other DLL or other functions. This way - by sub
classing - you can write your own tracers and API replacement
routines in CA-Visual Objects.

The StorageRDD class provides the possibility to create
nested storages by subclassing the directory management func-
tions. Runtime functions DirMake(), DirChange() and
DirRemove() will work with storages if the StorageRDD class is
active. If the directory names include drive letters StorageRDD
will create sub storages with respective drive letters in the root
storage.

Keep in mind that files can be stored as streams only in the
current storage (selected with DirChange() and all files (streams)
in the current storage have to be closed, before a new storage is
selected with DirChange(). New storages can be created without
any changes in the current storage. Files can be opened only in
exclusive mode. All these limitations are in essence due to the
fact that the current Structured Storage implementation permits
only exclusive access to nested storages and streams.

The StorageRDD class can be suspended/restored by setting
the export variable fActive:

o:fActive := FALSE

Files already opened will be handled independently the fActive
setting. This flag makes a difference only for file creation and
directory operations.

Happy End
This article gave you basic tools for using compound files in your
own applications. The declarations in the storage.aef contain the
necessary classes and the presented examples illustrate how to
handle compound files.

How practical this kind of file management really is remains
to be seen, considering the limitations in the current version of
the storage.dll. Compound files can be a good solution for sto-
ring data in proprietary format for exclusive access. The pres-
ented StorageRDD class is meant as an interesting example of
the possibilities CA-Visual Objects offers as a language, rather
then a serious practical application.

Ralf Saborowski
VP R&D
Computer Associates International, Inc.
E-Mail: Ralf.Saborowski@cai.com

Literature:
[1] SDT 01/99

Ralf Saborowski
Native COM with CCA-Visual Objects

[2] SDT 03/99
Ansgar Trimborn
GoVest!

8 Software Development Techniques 01/2000

Abb. 2: MyDocFile.dbf in Poor Man’s Doc View

Jan V. Balek

eMail with FlagShip

Everyone wants the ability to send indi-
vidual and group eMail directly from the
existing database programs.

The standard xBase language, which FlagShip also uses, is main-
ly intended for programming database applications. A typical
address database usually contains all of the information, needed
to automate sending eMail. Nothing stands in the way.

When the application itself becomes eMail-enabled, the
various elaborate detours involving normal eMail programs can
be forgotten. Additionally, each addressee receives a separate
eMail instead of the unpleasant and impersonal list of CC’s (car-
bon copies) or BCC (blind CC) normally used.

Such an eMail option increases the value of the enabled
application.

Prerequisites

Unix (or Linux) provides the necessary eMail dispatcher in the
form of the Sendmail program. The Unix installation process
normally installs Sendmail automatically. Sendmail can operate on
eMail either as a background daemon, or be called directly.

An Internet connection is practically another prerequisite
these days. Sendmail uses the same log (usually SMTP) as
Netscape or most other eMail programs. If such a program is
running, no further adminstrative actions are required. If not,
the system installation program (such as Yast for SuSE Linux)
installs the necessities in just a few minutes.

Of course, properly proper formatting the data sent to
Sendmail is also required. This manual work is possible, if com-
plex, and usually requires inside system knowledge. The
FlagShip library includes the WebSendMail() function, in order to
make this work as simple as possible, as will be shortly seen. It
belongs to a complete family of Web*() functions, which are
intended for communication with the Internet. These functions
are contained in the FlagShip distribution (see [1]), and the sour-
ce code is available in case modifications are needed (see [2]).

A simple eMail program

The first example represents a simple stand-alone program for
dispatching boilerplate to one or more addressees. The name of
the text file, as well as the target addresses, are passed through
the command line, when the program is called.

The program is quite simple. The only modification, which
you must implement, is the entry of your own eMail address in
the #define MY_EMAIL line at the top of the program. This
information goes to the recipient in the From: entry and should
be corrected. Otherwise, the reciever cannot properly reply.

WebMailDomain() (see [2]) checks if the target address is valid.
The return value is either a properly formatted SMTP eMail
address (such as XYZ@Domain.XYZ), or empty under error
conditions.

WebSendMail() is the core of the program (see [2]), and sup-
ports either the Sendmail program, or daemons. Before dispat-
ching eMail, it checks the most important data and returns an
appropriate return code, for example, 0 for success. In the event

9Software Development Techniques 01/2000

// mail1.prg: example for using FlagShip to
// create and send e-mails
// This example sends an available ascii
// text file (passed as 1st parameter)
// to max ten recipiens (1..10) given in
// parameter 2 to 11.
//
// Compile: FlagShip mail1.prg -o mail1
// Execute: ./mail1 email_text “to-address”
/ [“to-address” ...]
// e.g.: ./mail1 body.txt “John Smith
// <jsmith@nowhere.com>” enyone@domain.net

// change this to YOUR e-mail address!
#define MY_EMAIL “myself@mydomain.de”

// get command-line parameters, check
// plausibility
//
parameters txt_file, p1, p2, p3, p4, p5,;

p6, p7, p8, p9, p10
local nCount, cEmail, ok

if pcount() < 2
? “syntax: “, execName(), “email_text_file” +;
“‘to-address’ “ + “[‘to-address’ ...]”

?
quit

endif

if empty(txt_file) .or. !file(txt_file)
? “sorry, e-mail text file ‘“ + ;

txt_file + “‘ not available.”
?
quit

endif

// send the e-mail body to all given
// addressees, display success/error
//
? “Sending an e-mail text ‘“ + txt_file + ;

“‘ (with bcc to “ + MY_EMAIL + “)”

// process all email adresses
for nCount := 2 to pcount()
// process command-line parameters
cEmail := &(“p” + ltrim(nCount -1))
if empty(cEmail) .or. ;
empty(WebMailDomain(cEmail)) // check
? “* e-mail address ‘“ + cEmail + “‘ ;

incorrect, not sent to”
loop

endif
ok := WebSendMail(MY_EMAIL, ; // from

“test e-mail”, ; // subject
memoread(txt_file) + ;

chr(13)+chr(10), ; // body
cEmail, ; // to..
NIL, ; // no cc
MY_EMAIL) // bcc

if ok == 0
? “- to “ + cEmail

else
? “* could not sent to ‘“ + cEmail + ;

“‘, error code =”, ltrim(ok)
endif

next
?
quit

// input not required, disable curses
//
function cursesinit
return NIL

of an error, the return codes are described in detail by the
FlagShip manual (see [3]).

The field Subject: was feed a literal, in this case. It could also
become a command line parameter, or be extracted from the text
file.

A note about the command line: If the parameter contains a
space, or the characters < >, this parameter must be in single or
double quotes.

A Practical Example

The next example represents a somewhat more complex, and
more generic, program, which can be inserted with minor modi-
fication directly into your application.

For reasons of space, the complete listing could not appear
here. However, you will find it on the enclosed CD in the \flags-
hip directory, with compilation notes, and additional comments.
Since you would probably rather copy this file, rather than type
the listing in, let’s devoute our attention to more interesting
details.

This time no defines for the sender’s eMail address. Instead, this
example uses the entire eMail header structure, which is then
passed to WebSendMail(). Note: you still need to modify the
hard-coded From: entry.

In order to simplify the modifications you will need to make,
field numbers were used instead of field names. This way, you
can simply modify the defines to match your database.

Perhaps you caught that Clipper would not allow the order of
the declaration statements above, such as the Local declaration
after an executable statement or the Parameters declaration in this
case. It is, however, allowed and correct for FlagShip. The later
Local (or Static) declaration increases in some cases the readabili-
ty, and enables hiding the dynamically scoped variables, either
with a later instruction, or conditionally.

10 Software Development Techniques 01/2000

// mail2.prg: example for using FlagShip to
// create and send e-mails.
// This example is interactive, i.e. it
// lets you create the common
// text (or use an asci file) and sends
// it to to all recipients given
// in a file or database.

// *** change the following e-mail header
// data for YOUR domain and company !!
static MY_EMAIL := {
‘“my name” <myself@mydomain.de>’,; //from
“Our Company Name”, ; // organization
“myself@mydomain.de”, ; // send reply to
“postmaster@myddomain.de”} // return path

parameters par1, par2
:: local
local aDbfStru := ;

{{“email”,”c”,60,0}, ;
{“name”, “c”,30,0}, ;
{“first”,”c”,20,0}}

// you may redefine the following field
// positions according to YOUR used
// database if any
#define FLD_EMAIL 1
#define FLD_NAME 2
#define FLD_FIRST 3
#define CRLF chr(13)+chr(10)

:: get and check parameters
:: display help on request
:: prompt for file name if not given,
:: create database from text if required

if !empty(cDbfName)
use (cDbfName) NEW

endif
ok := used() .and. !eof()

// check if at least one valid
// e-mail address is available in
// the database (e-mail field)
if ok
ok := .F.
while !ok .and. !eof()
ok := !empty(;
WebMailDomain(fieldget(FLD_EMAIL)))

skip
enddo
go top

endif
if !ok
wait “sorry, no address data “ + “available ...”
quit

endif

:: read the e-mail body from file
:: or create it on-line if not avail.
:: prompt for subject

// send all the e-mails
//
go top
?
while !eof()
cEmail := WebMailDomain(fieldget(FLD_EMAIL))
if !empty(cEmail)
:: format the title

// if the normailzed e-mail differs
// from the given one, send both
// to be sure to be delivered
cCc := alltrim(fieldget(FLD_EMAIL))
if upper(cEmail) == upper(cCc)
cCc := NIL

endif
ok := WebSendMail(;

MY_EMAIL, ; // from address
cSubject , ; // subject
cHead + CRLF + CRLF + ;

cBody + CRLF, ; // body
cEmail, ; // addressee
cCc) // carbon copy

if ok == 0
nSent++
?? “ - sent”

else
nFailed++
?? “- FAILED”

endif
endif

else
? fieldget(FLD_EMAIL), cHead, ;

“... NOT sent, wrong address”
nFailed++

endif
skip

enddo
wait “done: “+ ltrim(nSent)+ “ sent, “ + ;

ltrim(nFailed) + “ failed...”
quit

//————————————————————
// Read ascii text data into tempor. dbf
//

Some Tips
If you have recently installed the system, it is worthwhile to test
the validity of the web and eMail configurations with, for exam-
ple, Netscape.

Don’t try the patience of friends. Many sites, such as
www.hotmail.com, are offering free web-based eMail accounts,
which can be activated and ready for testing within seconds. If
everything works, the free account can be dropped just as quik-
kly.

Although network, modem, and ISDN settings usually install
without problems, the excellent Linux documentation covering
these topics is worthwhile reading. The files can be found under
/usr/doc/howto/*, and begin with ISP, PPP, and NET-3. The
ZLess program is also an excellent viewer for these documents.

zless *ISP*gz

If your computer suddenly develops a mind of its own, and
starts independantly connecting to the Internet, this is not a
computer virus (which are mostly unknown in the Unix world,
anyway). It is far more likely to be Sendmail, or the cron daemon
running in background, in an attempt to send unsent eMail.
Depending upon your configuration setting in /var/spool/mque-
ue/var/mailq, or /var/spool/postfix, outgoing eMail is only deleted
after being successfully sent. The mailq command can display
the list of unsent eMail. With it, you can check, or even delete,
these unsent eMails, directly, with the permission levels Root or
Su. Deleting will stop this undesirable behaviour.

5. References
[1] In this issue a free, fully executable, version of FlagShip

(for the SuSE 6.2ff or Redhat 6.0ff and similar Linux
distributions) is contained on the enclosed CD under
\flagship. Please see the ReadMe and license.html files.

[2] After installation, source for the standard Web*() func-
tions is contained in /usr/FSsrc /tools/webtools.

[3] The complete FlagShip on-line manual is included
with each distribution. A printed manual is also avai-
lable. See also man fsman for further details.

[4] “Daemon” does not mean a type of devil �, rather a
utility program operating in the background. The
abbreviation comes from “Disk And Execution
MONitor”. See also http://foldoc.ic.ac.uk.

Jan V. Balek
eMail: jvb@multisoft.de

11Software Development Techniques 01/2000

function readToDbf(file, aDbfStru)
:: see source code
return tmpdbf

** eof **

Uwe Holz

CGI APPLICATIONS for Linux/UNIX

More and more developers of Internet
applications are confronted by their
customers with the demand for a Linux
version. That is, since Linux is a modi-
fied version of UNIX, this is the sturdiest
platform for Internet servers, not to men-
tion performance advantages. This arti-
cle shows how you can transport the
source code of your VO CGI application
1:1 into UNIX. It describes which tools
are needed and how an appropriate envi-
ronment is installed. As a result of this
study, special FlagShip versions of the
VO Base Classes HTTPCgiContext and
LogFile have been developed that makes
this port possible.

In the beginning there was... UNIX
Hardly anybody who seriously deals with application develop-
ment nowadays can avoid the topic of the Internet. It is really
amazing to see how rapidly the demand for Web-applications has
risen. They are a main topic of this magazine from its first issue
on. However, so far mainly Windows/NT was regarded as the
general platform for it. The reality looks slightly different:

The Internet itself was in earlier times simply a domain of
UNIX, a long time before it became interesting for Windows
programmers, not to say, attainable. Still today the UNIX server
still forms the crucial components in the Web, and surely for
good reason. All standard TCP/IP systems existed already many
years before the first NT version. Not very many Internet
Providers are deeply opposed to the idea of introducing NT as
an alternative platform to the proven UNIX machines. They
surely have good reasons for it.

As long as it concerns pure client applications, Windows
NT/9x/2000 is of course the first choice. Here Microsoft con-
trols the market hands down. With Internet server applications
on the other hand, one does simply not go past UNIX. Lately,
Linux has become very popular as the alternate UNIX platform,
which additionally confirms the trend.

Ask your Provider

As application developers you should be prepared for this situa-
tion. Imagine the following situation: You have developed an
Internet application for a customer, he is content, you naturally
all the more, pure joy. One day he calls and tells you that he has
changed his Provider. The new one, of course, only has Linux
servers. “No problem, is it?”, he said without bad alterior moti-
ves. At the latest now you become aware of the term platform
dependence. Whether your customer really brings you into dif-
ficulties with this will still show up. For the time being, we take
the described situation as a basis for further considerations.

CGI or what?
First we need to discuss what is required for the porting of a VO
application. At first there would be the technology. Just to tell
you in advance: everything other than CGI is an illusion. In
previous contributions to this topic it has already been referred
to this. Also the search for a suitable compiler is useless. Already
to the weddings of Clipper there was the FlagShip compiler of
Multisoft. At that time it was often dismissed under the term
UNIX derivative of Clipper. I think the time for this compiler
has now come to life.

The compatibility to Clipper is extremely high. This contri-
bution will show whether and to what extent is suitable for the
Porting of VO source text.

The environment
After the questions about the compiler and about the technolo-
gy are settled, the environment is interesting. For a UNIX begin-
ner like me the new platform is actually already a large hurdle.
Apart from the compiler and operating system, also all other
tools, e.g. the editor, require a large expenditure of time for trai-
ning. Who starts back from this can make do with a hybrid envi-
ronment quite well for the moment.

For this you need a Windows workstation (Windows
9x/NT/2000) and a Linux server. Both are connected directly
by TCP/IP or within a LAN.

Linux and FlagShip installation

A special version of FlagShip must be installed on the server. In
my case it is the FlagShip release 4.48.7452 for Linux ELF &
Glibc-2.1. It is, among other things, also contained on the
accompanying CD. My Linux installation is “Linux 2.2.12-32”, a
RedHat-6.0-Distribution. Other versions are naturally also pos-
sible. A further important package is Samba, a collection of
freely available software tools that make it possible to use Linux
as file and printer servers for Windows workstations.

Samba is contained in the installation with all usual Linux
distributions as an option. Do you happen to know the quickes
NT system for file and printer servers? There exists a persistent
rumor that this is Linux+Samba.

From my own experience I can confirm that this has a very
good performance. A direct comparison is a good topic for a
further article, I think. But back to the topic:

Samba recognizes the SMB record on the Linux server. This
is used by all Windows versions for common access of data and
printers. Thus disc drives and listings like those of NT servers
can be mapped on the work station. After the release of such
listings the following is to be considered:

Windows98, WindowsNT (starting from service pack 3) and
Windows 2000 use coded passwords for access to network disc
drives. Therefore the Samba configuration file smb.conf has been
configured accordingly:

In addition it is unfortunately necessary to install a special pass-
word file on the Linux system. You find the instructions for it
in the Samba documentation and/or in supplemental literature.

12 Software Development Techniques 01/2000

[global]
. . .
encrypt passwords = yes
security = user
. . .

Work station

With the release of listings on the Linux server a large hurdle is
overcome: the editor. Now you can use your favorite DOS
and/or Windows editor and get along completely without Vi
(editor that is available on each UNIX). By the way, recently I
heard an interesting assessment to it: “Vi is rather difficult to
learn. At first sight, it looks just as antiquated as edlin from
DOS. But someone who can control it, can also can cook eggs

with it.“ I became curious and tried Vi, and I must say, the man
seems to know what he is talking about.

Editors are something like a religion for programmers, Vi
supporters must therefore forgive me for these remarks. In my
next life I will surely work at Vi, Emacs or another one of the
numerous partially graphical UNIX editors a bit more, but for
now, I just have no time for that experience...

After the access to the source text is clarified, the compiler
remains intact. This one must naturally be operated on the
Linux server. But also it is there for an access reason: terminal
programs. They make it possible to practically remote control
the server from the work station. The hyperterminal of
Windows (accessory/communication) is such a program. Via
the port 23 a Telnet connection to the server can be developed

Fig.1: Telnet connection to the Linux server

If this one is perfect, then the Linux server can be served on the
level of the command line. Mind you, in a window on the
Windows station, thus in the user’s environment.

Compiler and other aids

During training for FlagShip, I was reminded inevitably of my
old Clipper days: no GUI, compiler and linker options, (r)Make
utility, and batch files. These are called “shell scripts“ in UNIX.
However, there are substantially more options so that the indivi-
dual projects can be configured precisely. All necessary informa-
tion is in the good and clearly arranged documentation for
FlagShip.

The FlagShip compiler itself produces portable C-code
which can be compiled with the GNU compiler ggc. This C code
by Flagship is not only suited for GNU compilers, but they have
the advantage that they are a lot more “intelligent” then their
corresponding peers (C compilers by Motorola, Siemens, Sun,
etc.).

After the production of this intermediate code the C-compiler
itself is called. Fortunately it can process DOS files, thus text
files, which use CRLF (0x0D0A) as line changes. UNIX systems
normally use only a LF (0x0A). Most DOS or Windows editors
have problems with the UNIX format. But for this described
environment, editing under DOS/Windows, compiling and lin-
king under Linux, this difference is thus insignificant.

However the Utility make of Linux does not “like“ DOS
files. If you work on the Make control file under Windows, this
must be converted on the Linux side with the utility program
DOS2unix.

In this connection I would like to point out one fault of my
popular editor Edt.exe: It stores each changed file in capital let-
ters. For Linux this is equivalent to a renaming if the file name
did not already consist only of capital letters before (remember
that UNIX is case-sensitive). Thus here we must intervene cor-
rectly before processing on the Linux server. That can quite sim-
ply be dealt with via a so-called Shell script:

Contents of the file Makefile are described later, first I would
like to deal with the porting of existing VO classes.

VO classes for FlagShip

The CGI beginning is as well known based on the fact that the
web-server makes parameters and other options available for the
respective request via environment variables. The appropriate
script process can query these variables and, in the case of a so-
called POST Request, read in additional data over the standard
input (stdin). The result is published as an HTML entity via the
standard output (stdout). The smallest CGI program looks in
FlagShip exactly as in Clipper:

13Software Development Techniques 01/2000

#
Prepare Makefile:
1. Rename MAKEFILE to Makefile
2. Convert from Dos to Unix format
#
mv MAKEFILE Makefile
dos2unix -a Makefile

#
Rename all involved files from
uppercase to lowercase
#
mv TEST.PRG test.prg
. . .

#
Call make utility
#
make install

#
Convert Makefile back to Dos-Format for
your favored Editor
#
unix2dos -a Makefile

? “Content-Type: text/html”
?
?
? “<html>”
? “Hello World!<p>”
? </html>”
?
?

The allocating of the handles for in- and output devices as under
NT is not even necessary here. So, appropriate classes are to be
realized still more easily than in VO. But how concretely does it
look with the conversion of VO Source-code?

Compatibility

The simplest beginning is of course just to translate the existing
sources with FlagShip. That is exactly how I began. The result
was at first discouraging: pages and pages of error messages.

With exact analysis most of them turned out to be trivial.
First it strikes that FlagShip uses other variable types than VO,
CHARACTER instead of STRING and INTVAR instead of
INT, NUMERIC instead of FLOAT. With appropriate #defi-
nes that can easily be regulated. These and other pre-settings
landed gradually in a header file, which was for obvious reasons
I called missing.fh. Here also, all important FlagShip header files
are merged so that each individual source file actually only needs
missing.fh:

It is true that with the help of this header file the compiler was
successful, but during the link phase, however, a set of functions
was missed, which mostly had to be rebuilt. Here is a summary
of these “subsequently delivered“ functions, the source text is
naturally present on the accompanying CD. First the FlagShip
sources (missing.prg):

Note: The functions above are missed only after the port of
existing VO sources. At first, FlagShip is Clipper-compatible con-
cerning these functions. I put FlagShip to an unusual test. The
compatibility concerning VO is scheduled for the next graphical
version, which I did not yet have at hand.

Some functions have even been realized in C (cmissing.c)
also:

Crypt() DirChange()
ErrString() Pow()

One of the three C-interfaces is nearly identical to the one of
Clipper. Since FlagShip produces C-code itself we have the pos-
sibility to embed C source code into the .PRG Files. Here an
example:

FlagShip presents itself thereby as a very open system, so that
all necessary functions can be copied easily.

Thus for functionality, VO source can generally be ported
problem-free. Even the OOP syntax is completely supported.
Particularly interesting is the fact that also the VO class dbServer
exists, this makes it, for example, possible to rebuild certain mis-
sing functions:

Skin module and initializations

After these preparations and using the functions developed in
the course of the work, one can start to act. The basic structu-
re of a CGI-application could be transferred in its essential
structure from VO. Additionally two small routines are necessa-
ry according to FlagShip documentation, which make important
initializations:

ProgramInit() CursesInit()

Shown below is the complete basic structure of a CGI-appli-
cation, which essentially corresponds to the VO-CGI-example
votest.exe. It also considers the use of the FlagShip Webkit, a
special Add-on by Multisoft for the organization of CGI appli-
cations. Besides, flagship supports special Web*() functions
which were not used here.

14 Software Development Techniques 01/2000

#ifndef _MISSING_DEFINED
#define _MISSING_DEFINED

#include “fspreset.fh”
#include “stdclass.fh”
#include “error.fh”
#include “fileio.fh”
#include “stdfunct.fh”
#include “directry.fh”
#include “rddsys.fh”

#define CRLF CHR(13) + CHR(10)
#define LF CHR(10)
#define BR “
”
#define CR CHR(13)

#define E_EXCEPTION 5333

#define INT INTV
#define STRING CHAR
#define FLOAT NUMERIC

. . .

#endif

FUNC Rand() AS INTV
LOCAL_LONG nRet
LOCAL iRet AS INTV

#Cinline
{
nret = lrand48();
}

#endCinline

iRet := nRet
RETURN iRet

FUNC DBInfo (n) AS USUAL
LOCAL oDBServer AS Object

oDBServer := DBObject()

RETURN oDBServer:Info(n)

#include “missing.fh”
#include “httpcont.fh”
#include “httpcgi.fh”
#include “logfile.fh”
// Comment out next line to use webkit
// #include “webkit.fh”

#ifndef _WEBKIT_CH
FUNC ProgramInit()

CALL fgsUse4html
RETURN NIL

FUNC CursesInit()
RETURN NIL

#endif

STATIC FUNC __MyError (oErr)
LOCAL cRepl AS STRING
LOCAL oError AS Error
LOCAL i AS INT

oError := oErr

The program basics which are common to all CGI-applications
contains a few FlagShip characteristics:

Each class can be defined by a prototype, similar to C++,
thus the compiler will presuppose this class as available. In addi-
tion, it is now able to call the methods of the respective class
directly (early binding). This concept works here very similarly
as in VO. However, here the agreement of the prototype of the
class and the respective methods already is enough:

The actual respective code can be written out into a separate
module. In connection with this example, this makes absolute
sense because the actual application is realized here exactly.

The function InitApp() (module missimg.prg) is responsible
for special FlagShip pre-settings, as the example shows:

The call of the C-runtime-function srand48() sets a special initi-
al value for the initialization of pseudo-random numbers by
means of lrand48(). The two FS_SET() calls guarantee that all
file and path names are converted into lowercase letters before
their use. All UNIX systems are case sensitive concerning file
names. That means that, for example, the file Test.PRG does
not have anything to do with test.prg, since it concerns two dif-
ferent filenames with regards to case sensitivity.

Looks like VO, doesn’t it?

The classes themselves can be moved over nearly 1:1 with VO.
Only Win32-API calls must be replaced adequately. That con-
cerns above all the determination of the full file name of the
application and some functions to work with the Registry. The
latter are rarely deleted. The name of the application can be
determined with the call of a FlagShip runtime function:

With the assignment of class names it must be referred here to
a FlagShip characteristic. Similarly, as in Clipper, only the first 10
characters are significant with keywords. This also applies,
among other things, to the names of classes. Consider therefo-
re the following references:

• All classes must differ clearly from each other by the
first 10 characters in the name.

• As long as a class is not used as a base class for the
further transmission, it can possess a name that is
longer than 10 characters.

• The name of a base class must not be longer than
10 characters, otherwise a compiler error arises.

From (1) –(3) it follows that, with the assumption of the classes
from VO to FlagShip, the class names had to be changed as fol-
lows:

15Software Development Techniques 01/2000

i := 3
DO WHILE ProcLine(i) > 0

cRepl += CRLF
cRepl += “MODUL “ + ProcName(i)
cRepl += “, LINE “ + ;

NTrim(ProcLine(i))
i++

ENDDO
IF SLen(oError:Description) > 0

oError:Description += cRepl
ELSE

oError:Description := cRepl
ENDIF
BREAK oError

CLASS StdCgi INHERIT HTTPCgi
PROTO METHOD HTTPResponse CLASS StdCgi

#ifdef _WEBKIT_CH
FUNC webkitmain (aEnv AS ARRAY,;

aForm AS ARRAY,;
oState AS USUAL)

#else
FUNC Start
#endif

LOCAL oCGI AS StdCgi
LOCAL cHtml AS STRING
LOCAL oOldError AS USUAL
LOCAL oError AS USUAL
LOCAL oLogFile AS LogFile
InitApp()

#ifdef _WEBKIT_CH
oCGI := StdCgi{aEnv, aForm}

#else
oCGI := StdCgi{}

#endif
oOldError := ;

ErrorBlock({|oErr| __MyError(oErr)})

BEGIN SEQUENCE
cHtml := oCGI:HTTPResponse()
IF SLen(cHtml) > 0

//
// Standard Behavior,;
// return a HTML
//
oCGI:Write(cHtml)

ENDIF
RECOVER USING oError

cHtml := ;
oCGI:HTTPErrorMessage(oError)

oCGI:Write(cHtml)
oLogFile := LogFile{NIL,NIL,.F.}
oLogFile:DumpError(oError)

END SEQUENCE
ErrorBlock(oOldError)
oCGI:Close()
RETURN

CLASS StdCgi INHERIT HTTPCgi
PROTO METHOD HTTPResponse CLASS StdCgi

FUNC InitApp() AS USUAL
//
// All special intialization goes here
//
LOCAL_LONG nTemp

nTemp := Seconds() + ;
Day(Date()) + SecondsCPU()

#Cinline
//
// init value for Rand()
//
srand48(ntemp);

#endCinline

// Set lowercase for all file names
FS_SET(“lower”, .T.)
FS_SET(“pathlower”, .T.)
RETURN NIL

ExecName(.T.)

HTTPContext -> HTTPCont
HTTPCgiContext -> HTTPCgi

Since the entire source code is present to the individual classes
on the accompanying CD, I would like to deal only with the pro-
totypes.

Class log file

The class LogFile was brought over particularly for compatibility
reasons. It shows a beginning to the logging of errors and other
information. An alternative to it offers the already mentioned
Ad-on Webkit with many possibilities.

LogFile provides the appropriate file according to standards
in the listing of a CGI-application. It receives the name of the
CGI-application and the extension log:

Classes HTTPCont and HTTPCgi

Normally both classes can be combined into one for the availa-
ble export. In VO this Design has been chosen because the class
HTTPExtensionContext is also derived from HTTPContext.
ISAPI and Extension-DLLs are not supported in Linux, there-
fore the design of the base class HTTPCont and the derived
class HTTPCgi are not absolutely necessary. For experimenting
with the OOP abilities of FlagShip, the retention of the design
however was of great advantage. Here is a list of the prototypes
of the imported classes:

The Test Program

So far one has always been talking about the “nearly complete”
assumption of VO source code. Here is a trial balance:

• Due to the common Clipper roots of VO and FlagShip,
we can fall back to a fundamental thing in common, their
syntax.

• Missing functionality was delivered subsequently
(missing.fh, missing.prg, cmissing.c).

• Differences that are present due to the different plat-
forms became totally enclosed in the classes.

• Each platform has an application Framework that is
somewhat different. This performs important initializa-
tions. In addition, the respective main module which
publishes the results to the server is implemented here.

• For VO and FlagShip applications, the fact is common
that the specific code for a CGI application is implemen-
ted in the method HTTPResponse() of the class StdCgi.

Same code for two platforms

Now the time has come for complete code-sharing. The VO
example can be brought over 1:1, be compiled with FlagShip,
and then be linked with the remaining modules to a Linux appli-
cation:

16 Software Development Techniques 01/2000

PROTO CLASS LogFile
PROTECT cFName AS STRING
PROTECT cBackupName AS STRING
PROTECT cDLLPath AS STRING
PROTECT lFileLog AS LOGIC
PROTECT lAppend AS LOGIC

PROTO METHOD Init CLASS LogFile
PROTO METHOD DumpError CLASS LogFile
PROTO METHOD DebugMsg CLASS LogFile
PROTO ACCESS ServerPath CLASS LogFile
PROTO ACCESS FName CLASS LogFile
PROTO ASSIGN FName(c) CLASS LogFile
PROTO ACCESS Append CLASS LogFile
PROTO ASSIGN Append(l) CLASS LogFile
PROTO ACCESS Log2File CLASS LogFile
PROTO ASSIGN Log2File(l) CLASS LogFile

PROTO CLASS HTTPCont
PROTECT cMethod AS STRING
PROTECT cQueryString AS STRING
PROTECT cPath AS STRING
PROTECT aArgs AS ARRAY
PROTECT aEnvValues AS ARRAY
PROTECT aPostValues AS ARRAY
PROTECT nError AS INTV
PROTECT cBinRoot AS STRING

PROTO METHOD GetBinRoot CLASS HTTPCont
PROTO METHOD HTTPServerVariables ;

CLASS HTTPCont
PROTO METHOD Init CLASS HTTPCont
PROTO ACCESS CLASS HTTPCont
PROTO ACCESS ServerPath CLASS HTTPCont
PROTO ACCESS QueryString CLASS HTTPCont
PROTO ACCESS Error CLASS HTTPCont
PROTO METHOD GetParams CLASS HTTPCont
PROTO METHOD GetParamValue;

CLASS HTTPCont
PROTO METHOD SetParamValue;

CLASS HTTPCont
PROTO METHOD DelParamValue;

CLASS HTTPCont
PROTO METHOD HTTPErrorMessage;

#include “missing.fh”
#include “httpcont.fh”
#include “httpcgi.fh”
#include “logfile.fh”

METHOD HTTPResponse () CLASS StdCgi
LOCAL cRet AS STRING
LOCAL cAction AS STRING
LOCAL x AS USUAL

cAction := lower(SELF:QueryString)

DO CASE
CASE cAction = “servervars”

cRet := SELF:HTTPServerVariables()

CASE cAction = “error”
// a runtime Error is forced with
// by an illegal operation
x := 0
cRet += x

CASE ATC(“.zip”, cAction) > 0

CLASS HTTPCont
PROTO METHOD HTTPRequestItems;

CLASS HTTPCont
PROTO METHOD HTTPMsg CLASS HTTPCont
PROTO METHOD GetServerVariable;

CLASS HTTPCont

PROTO CLASS HTTPCgi INHERIT HTTPCont
PROTO METHOD Init CLASS HTTPCgi
PROTO METHOD Close CLASS HTTPCgi
PROTO METHOD WriteImage CLASS HTTPCgi
PROTO METHOD WriteContentFile;

CLASS HTTPCgi
PROTO METHOD Write CLASS HTTPCgi
PROTO METHOD WriteClient CLASS HTTPCgi

Naturally it concerns a simple example here. But also larger
applidations can be converted problem-free with the described
measures. A condition for it of course is the retention of the

suggested program structure. The Html file index.html used for
the VO example votest.exe serves for testing this:

Before the actual test, the file index.html must be copied into the
weblist of the Linux server / <html Root>/test and the appli-
cation test.exe must be copied into the listing / cgi bin/test /.
Now it can be called via the Internet Browser by http://<Linux
Server>/cgi bin/test/index.html . On condition of correct con-
figuring of the web server Daemon, on the Linux side you
should receive the following answer to this Request (fig. 2):

Fig.2: Data index.html on the Linux-Server
A click on the link “display server Environment“ grants us,

as expected, information about the installed web software and its

Fig3: Server-Environment on the Linux-Side
Also the run time errors can be documented and prepared just
as well under NT (Fig. 4):

Fig4: Runtime errors edited in Html-Form

17Software Development Techniques 01/2000

<html>
<head>
<title>CGI Application Test Page</title>
</head>

<body>
<h1>CGI Application Test</h1>
<form action=”/cgi-bin/test/test.exe”

method=”post” name=”TestForm”>
<p>Value1: <input type=”text”

name=”Value1” size=”4”></p>
<p>Value2: <input type=”text”

name=”Value2” size=”5”></p>
<p><input type=”submit”

value=”Execute POST Request”></p>
</form>

<p><a href=”/cgi-bin/test/
test.exe?SERVERVARS”>
Display Server Environment

</p>

<p><a href=”/cgi-bin/test/
test.exe?error”>
Runtime Error Handling

</p>

<p><a href=”/cgi-bin/test/
test.exe?test.zip”>
File Download

</p>
</body>
</html>

IF File(cAction)
SELF:WriteContentFile(cAction,;

“application”, “zip”)
cRet := “”

ELSE
cRet := SELF:HTTPMsg(“File “+;

cAction + “ not found”,;
“test.exe”)

ENDIF
OTHERWISE

cRet := SELF:HTTPRequestItems()
ENDCASE

RETURN cRet

The remaining calls of the CGI-script test.exe (form proces-
sing, file download) work as expected as accurately on an NT
server. The application was successfully ported with it.

The CGI-applidation is, in the case here, called test.exe. The
file extension .exe is not compellingly necessary in UNIX to
mark an executable file. This happens via appropriate characteri-
stics. I personally think it is, however, quite practical to main-
tain such characteristics typical for DOS/Windows. Thus the
file is already marked optically as an “executable file”.

In order to mark the script also for UNIX as executable, the
instruction install can be used. Thus we have also arrived at the
project file already mentioned. Here all necessary steps are
agreed upon for the generation of the application including
installation.

The project file

The available test routine consists of the following modules:

test.prg
missing.prg
cmissing.c
httpfunc.prg
httpcont.prg
httpcgi.prg
logfile.prg

You will find a possible variant for the appropriate project

file on the accompanying CD as file Makefile:
INSTALLDIR=/home/uwe/httpd/cgi-bin/test

CFLAGS=-I. -I../include
FSOPTS=-na -MStart -w1 -w2 -w3 -w4
LINKOPTS=-L. -L/usr/lib

all: test

test: test.o \
../lib/missing.o \
../lib/cmissing.o \
../lib/httpfunc.o \
../lib/httpcont.o \
../lib/httpcgi.o \
../lib/logfile.o
FlagShip $(LINKOPTS) $(FSLIBS) \

$(FSOPTS) -otest.exe $^

%.o: %.prg
FlagShip $(CFLAGS) $(FSOPTS) \

-rc -c -o$@ -q $<

install: test
install -s -o uwe -g root -m 755 \

test.exe $(INSTALLDIR)

Before the use of these scripts you must adjust only the installa-
tion listing (INSTALLDIR) and the call of the instruction
install to your concrete conditions.

Result: CGI, what else!
The demand for a version of VO for Linux has lately been incre-
asingly expressed. There are primarily CGI applications which
must be ported from NT to Linux. My standard response in
such cases was so far a reference to the FlagShip compiler. I
decided to do a closer analysis of the product mentioned in
order to be able to continue answering this with good conscien-
ce.

Beginning with the porting of the presented classes I con-
verted several CGI applications. The present contribution is
therefore rather an empiric report and does not claim any com-
pleteness. The compiler and other FlagShip utilities are only
mentioned marginally. The contribution is written rather from
the view of a specialist from beyond. Nevertheless I think that
I can state the following with good conscience:

• FlagShip offers in principle everything that VO users
need for the porting of their applications.

• In the case of use of the classes and functions contained
in the project this porting is extremely facilitated.

• CGI applications can be ported very easily into UNIX.
ASP, ISAPI, and other beginnings are not excluded from
it. Whoever gets involved in these technologies should
know that he commits himself exclusively to the NT
environment.

The FlagShip compiler is a very professional, high performing
and open development system. It is, besides Linux, available on
all UNIX systems on the market. The technical support of the
firm Multisoft is exemplary, inquiries and e-mails are answered
quickly and precisely.

CA-Visual Objects and FlagShip form an interesting bundle
for implementing platform Internet applications. In this sense
the demand for a UNIX version of VO is unnecessary because
there are already existing capabilities.

Literature
Stephen Genusa: Using ISAPI, Que, 1997 (ISBN 0-7897-

0913-9)
M. Wielsch,J.Prahm,H. g. Esser: Linux internal, DATA

Becker, 1999 (ISBN 3-8158-1292-5)
Dr. Olaf Borkner-Delcarlo: The Samba book, publishing

house SuSE PRESS (ISBN 3-930419-93-9)
Multisoft data processing technology GmbH: FlagShip docu-

mentation, manual release: 4,4, 1999

Uwe Holz
Email: Uwe.Holz@ca.com

18 Software Development Techniques 01/2000

Georg S. Lorrig

Xbase++ SL 2 –
the first impression

Shortly before this issue was sent to the
press, Service Level 2 for Xbase++ was
released. It brings in new functionality
as well as substantial performance
gains.

Speed
From the beginning, the modest performance of Xbase++ has
been criticized by many users. Alaska has been able to achieve
an improvement in this area with SL2. During the public beta
phase there were messages from users enthusiastic about the
speed increase. Here are some comparative measurements that
I performed under Windows NT 4 SP 6 (Pentium III 560 MHz
with 384 MB RAM). After creating the test data files the system
was shut down and started again. Therefore side effects, such as
caching, should be alike for all three programs. The standard
DBF/NTX data base driver was used.

PACK was performed on the database where the first five
records were deleted. If you now compare the results of SL1
and SL2 you are in for a big surprise at the SL2 speed boost.

However, not only the execution speed, but also the deve-
lopment cycle is turbo-charged: the Compile instruction xpp now
accepts several program names. Since most programmers pro-
bably work with PBUILD, the benefit is the ability to compile
several programs in one step.

Installation
My first attempt to install failed but this was my own fault: I
wanted to apply the international SL2 to a German installation.
This is not possible for obvious reasons. A glance at the file
PDR.TXT in the \XPPW32 directory will tell you which langua-
ge version is installed.

• It is important to regenerate all objects after the installa-
tion is complete. This also applies to all of your own
libraries, etc.

PBUILD –a

takes care of that:

fig. 1

Internals
• The database engine was revised for optimum speed and

memory consumption. The effects already made clear in
the remarks above.

• The popularity of the xBase languages probably has its
origin in their flexibility. A pillar of this flexibility has
always been the macro operator “&”. With Clipper 5.0
the code blocks were introduced. In my own programs
there is hardly a source file not using this feature.
Normally code blocks represent pseudo-code, which still
has to be interpreted. Now in certain situations the
Xbase++ compiler is able to produce native code, which
the code block refers to. This should likewise lead to
better performance.

• Apart from DBFDBE and NTXDBE, now DELDBE
and SDFDBE are also loaded according to the standard.
Whoever uses an adapted version of the DBESYS.PRG
should understand this issue and make appropriate modi-
fications.

Extensions
• Xbase parts can now be configured with foreground and

background colors. This creates for example the possibili-
ty to mark field attributes, such as ‘field input necessary’,
by the choice of color.

• The GUI GET element XbpGet has now a pre- and a
post-validation added. In order to handle the focus chan-
ge, a new XbpGetController class was introduced. This
class comes with source code, thus you get a good
opportunity to study some Xbase++ internals.

• The way from the familiar but lusterless text mode to the
‘brave new GUI world’ was sometimes very thorny.
While in the text mode you do not need to write a lot of
code in order to be able to edit an active cell in a
TBrowse object, this was inconceivable in the GUI envi-
ronment. XbpBrowse is a class derived from XbpStatic,
which is ‘static’, as the name suggests. With SL2 this also
works in XbpBrowse. But the guys (& gals?) from Alaska
didn’t stop here: it is possible now to assign specific GUI
controls for each column individually. I.e., you can use a
XbpSpinButton to select an amount, or the country code
can be selected from a XbpListBox. The possibilities
opening here are really fascinating:

19Software Development Techniques 01/2000

Pic.2, CellEdit

• Most Xbase++ parts are ‘genuine’ GUI controls, like the
ones in many other Windows programs. With the
XbpColumn/XbpBrowse combination Alaska created a new
version of these controls. XbpColumn was extended and
now offers the possibility of ‘building’ your own browser
objects. ‘Browse’ does not necessarily have to be a tabular
view of a database or an array.

• The DacPagedDataStore class is totally new. It is the basic
structure behind the new XbpQuickBrowse and it permits
cached access to tabular data, no matter whether the
source is a database or a two-dimensional array.

• As the name suggests, allows XbpQuickBrowse to imple-
ment graphic Browser with minimum effort. This one is
not as configurable as XbpBrowse, but it fulfills its purpose
in quick and dirty solutions. It is also well suitable for
prototyping.

Prospects

The speed increase is naturally the first thing to mention. Next
come extended possibilities, like those offered by the XbpBrowse
and XbpColumn classes.

The SL2 version points out very nicely that there is a large
potential for Xbase++ and that Alaska is willing to use and
extend this potential. ‘Under the hood’ of SL2 the first glimp-
ses on Xbase++ 2.0, which will lean even more towards
Client/Server, are already visible. Brace yourself for many plea-
sant surprises to follow.

Georg S. Lorrig
Email: georg@lorrig.com

20 Software Development Techniques 01/2000

Web Applications with Alaska Web
Application Adapter (WAA). Part II.

Basics for the web application examples

The WAA of Alaska provides classes to
create dynamic HTML pages with forms
and edit controls. However, current stan-
dards demand more complex design and
dynamic generation of web pages would
require intimate knowledge of HTML.
Besides, the structure of the pages
would not be that efficient. That is why I
use NetObjects Fusion to create the ent-
ire site. This tool lets you simply paint
the whole site and learn the necessary
HTML and Java skills along the way. The
following examples show how to trans-
form the ‘painted’ HTML pages into
dynamic pages to be used with WAA.
The conference CD contains the trial ver-
sion of NetObjects Fusion 4.0. The direc-
tory UserSite\waa99_NOx contains
NetObjects project files for the
Home_Nox directory.

At the moment, web applications run only with XBase++ ver-
sion 1.20.178. The directories Home_NO1 - Home_NO5 and
Source_NO1 –Source_NO5 correspond to individual examples.
For each example the respective Home_Nox directory should
be copied into Home and the directory Source_NOx into
SOURCE and buildd.bat should be called in SOURCE. The
included XWEB.DLL is valid up to 01.03.2000.

You should make necessary changes in the file Waa99.ini in
the WaaServer directory. The directory Tools contains the trial
version of NetObjects fusion 4.0 and the WaaServer installation
for the Apache Web Server.

To run applications Apache or another web server should be
installed. The Home directory must be created in
WaaSession\Home. The directory Apache_Config should con-
tain appropriate Apache configuration files with name entries to
be adjusted. The WAA Server and WAA Gateway are already in
appropriate directories. First the web server must be started. In
order to start the WAA Server the file waa.cmd or waadbg.cmd
(for debug mode) must be called. The entry WAA_HOST in this
file should be adapted first.

Installation and necessary adjustments

Installation of examples does not create a Web Server! The
installation of the WAA Server in the WaaSession\Tools\WAA
directory includes the installation of the Apache Web Server.
The WAA patches in the same directory must be installed as
well!
Please do not install the WAA Server into the directory
WaaSession. This directory contains WAA Server with
session-specific files already installed!

At the end of the installation the question “enable HTML
help?” should be answered affirmative for the XWeb help to be
available. XWeb help requires MS Internet Explorer installed.
After the installation the following adjustments should be made:

• · In the directory WaaSession: in WAA.BAT and
WAADBG.BAT the entry “SET WAA_HOST=” enter
your host name here.

• · In the directory WaaSesion\WaaServer: in WAA99.ini the
entries DBF=, Home= and Script= must be adapted.

• · In the directory WaaSesion\Home\cgi-bin: in
WAA1GATE.CFG the entry “host name =” must be
completed with your host name.

• · It is possible that some images will be not visible when
NetObjects projects in the directory UserSite are opened.
In that case select the appropriate image in the Image
File Properties/Browse dialog.

Web applications with visually designed
HTML files

Entry form (example 1)

This example contains a log-in page and a response page. The
Site was entirely painted with NetObjects.

Some special features for the entries in NetObjects for com-
munication with the WAA:

Figure 1NetObjects fusion adjustments

• · In the layout properties „layout as a form“ must be
checked

• · In form settings the access to WAA gateway must be
entered under „action“: /cgi-bin/waa1gate.exe.

• · Hidden variables WAA_PACKAGE and WAA_FORM
must be entered.

• · In properties for input fields the name of the field that
later will be used with oHTML:getVar(...) must be enter-
ed. The names are case sensitive!

The O.K. button is the pages submit button. Clicking this but-
ton in the browser initiates the execution of what has been
entered under „Action“. In our case the WAA Gateway is cal-
led, which passes on the variable values of the page to the WAA
Server. The WAA Server will determine based on the
WAA_FORM value which DLL function to call.

21Software Development Techniques 01/2000

Path adjustments for the web application

In order to place correct paths into the program code they are
stored in an INI file. The INI file must be located in the WAA
Server directory. The section and entry names of the INI file are
fixed:

The paths are internally used to open databases and read HTML
files. The SrvImage path entry can be used to check for the pre-
sence of image files. The GwImage path entry is used to dyna-
mically bind image files into HTML code.

Creating a dynamic HTML page

In our example the DLL function DoLogin is called.

The contents of a variable field are queried by an
oHTML:getVar(“VNAME“) call. In this case these are the con-
tents of a control on the form. SetHomeEnv() reads the INI file

and returns the Environment object. Methods of the
Environment object use path entries from the INI file.
SetHomeEnv() and the Environment methods are contained in
the XWeb.DLL. The method LoadHtmlFile() reads the painted
HTML page into a string variable. On this page the text “#USE-
RINFO“ was entered as the user tag. This user tag is now repla-
ced by our response text. The method Header() of the HTML
object receives the HTML string. If TRUE is returned the
HTML string of the HTML object is sent as a page to the
Browser.

Form validating (application example No2)

The example No2 looks pretty much like No1, but here we want
to add input validation.

Validating on the server side

The simplest type of validating takes place on the server side in
the SOURCE code:

The content of the variable is determined by calling
oHTML.getVar(). If it is empty a message is sent to the Browser.
SendMsg() is contained in the XWeb.DLL.

The disadvantage of this method is the fact that the input
form must always be sent first. For validating that requires data-
base access this is the only way. For trivial validating, however,
there is a possibility of validating directly on the client side.

Validating on the client side with Java Script

For validating on the client side a Script language is necessary. In
the examples we use exclusively Java Script.

In the preceding section we learned that the “OK“ button is
a submit button which will send the request to the WAA
Gateway. In Java Script there are so-called “Events“ e.g. onClick.
The onClick is triggered when certain HTML controls are clik-
ked or operated. In HTML syntax it looks this way: <
onClick=return “LoginCheck()>“, which means that the Script
function LoginCheck() is called when the button is operated. If
this function returns FALSE, no submit is executed.

HTML tag for the submit button with Java Script:

22 Software Development Techniques 01/2000

[SiteData]
; absoluter Pfad zu DBFDBF=\devcon99\data_dbf

;absoluter Pfad zu den HTML-Dateien entspr. ;dem Home-
Verzeichnis
Home=\devcon99\home

;absoluter Pfad zu den (Java)-Script-;Dateien
Script=\devcon99\data_script

;relativer Pfad vom WaaServer zu den Image-;Dateien
SrvImage=..\home\image

;relativer Pfad vom WaaGateway zu den ;Image-Dateien
GwImage=../image

;relativer Pfad vom Home-Verzeichnis zum ;cgi-bin
Verzeichnis
CGI=/cgi-bin

FUNC DoLogin(oHtml, oContext)
LOCAL cVName := oHTML:getVar(“VNAME”)
LOCAL cAnrede := oHTML:getVar(“ANREDE”)
LOCAL cNName := oHTML:getVar(“NNAME”)
LOCAL cPass := oHTML:getVar(“PWORD”)

oEnv := SetHomeEnv(WAA99, “waa99.ini”)
if ! oEnv:OpenDataSource(“CUSTOMER”,

{“CUSTOMER”}, “PWORD”, “FOXCDX”, oHtml)
SendMsg(oHTML, “Fehler”, “Kann

Datenbank nicht öffnen”)
RETURN True

endif

usw.....
oEnv:CloseDataSource()
cText := “Guten Tag”;

+cAnrede+cVName+cNName+”!”

// lade HTML-Seite
cHtml := oEnv:LoadHtmlFile(“mainmenu.html”,

False, oHtml)

// ersetze Tag
cHtml := strtran(cHtml, “#USERINFO”, cText)

// sende dynamische page
oHTML:header(cHtml)
RETURN TRUE

LOCAL cVName := oHTML:getVar(“VNAME”)
LOCAL cNName := oHTML:getVar(“NNAME”)
LOCAL cPass := oHTML:getVar(“PWORD”)
if empty(cPass)

SendMsg(oHTML, “Eingabe-Fehler”, ;
“Bitte geben Sie ein Passwort ein”)

RETURN True

elseif empty(cNName) .or. empty(cVName)
oEnv:CloseDataSource()

SendMsg(oHTML, “Eingabe-Fehler”, ;
“Bitte geben Sie Vor- und Nachnamen ein”)
RETURN True

endif

<INPUT TYPE=SUBMIT NAME=”pbOk” VALUE=”Ok”
ID=”FormsButton1”
onClick=”return LoginCheck()”>

Java-Script in a HTML file:

The onClick instruction is simply entered in NetObjects into the
Properties of the Button tag and Java Script can be inserted e.g.
as file into the Properties of the layout form. Placing within the
HTML code is executed automatically.

Internet Shopping (example 3)

With this application a fundamental change is introduced. Each
page makes calls only to the DLL function “DoDispatch()“.
There the necessary function is selected from the CASE state-
ment branch. For this purpose a hidden variable
WAA_ACTION is created for each page. This variable receives
at run-time the name of the function to be executed in
DoDispatch. The advantage of this approach is that you can use
in a form as many DLL functions as you like. This is implemen-
ted with Java Script too and uses the already introduced onClick
event.
The function DoArticle() produces a dynamic page to display all
articles and their availability. For this purpose two pages are cre-
ated in NetObjects. The Article is the HTML page dynamically
filled with data. The Article is designed only to generate the
HTML to display the articles. The hidden variable
WAA_CARGO that already stores the user ID passed by
DoLogin(), is sent to every page. This way there is no need to
create a Cookie for ordering processes.

GetDataPos() determines the position of the user tag #DATA
that marks the position from which data is inserted. AddData()
inserts data into the HTML string.

The HTML code was generated the page designer and is inser-
ted into the HTML string line by line.

23Software Development Techniques 01/2000

<script language=”JavaScript”> <!—
function LoginCheck() {
var checkStr =

document.LOGINFORM.PWORD.value ;

if (checkStr.length < 4) {
alert(“Bitte geben Sie das Passwort mit

mindestens 4 Zeichen ein”) ;

document.LOGINFORM.PWORD.focus() ;
return (false) ;

}
return (true) ;
} //—> </script>

<......onClick=this.form.WAA_ACTION.value=”
DoOrderForm”>

FUNC DoArticle(oHtml, oContext)
LOCAL cHtml, nPos, oEnv
LOCAL cCargo := Html:getVar(“WAA_CARGO”)

oEnv := SetHomeEnv(WAA99, “waa99.ini”)

if ! oEnv:OpenDataSource(“COMPUTER”,
{“COMPUTER”}, “PRODUCER”,
“FOXCDX”, oHtml)

SendMsg(oHTML, “Daten-Fehler”, ;
“Kann Datenbank nicht öffnen”)

RETURN True
endif

cHtml := oEnv:LoadHtmlFile(“artikel.html”,;
False, oHtml)

// Beginn für Dateneintrag
nPos := GetDataPos(@cHtml)
dbGotop()
do while ! EOF()
// Daten hinzufügen

// Suche nach dem Tag </TABLE> nach dem
// Usertag #Data um Daten einzufügen
// <TD WIDTH=149><P>#DATA</TD></TR></TABLE>

STATIC FUNC GetDataPos(pcHtml)
LOCAL nPos
nPos := at(“#DATA”, pcHtml)

// #Data Tag entfernen
pcHtml := strtran(pcHtml, “#DATA”, ”)

// suche nach Tabellen-Ende
nPos := strAtX(“</TABLE”, pcHtml, nPos)

// Position um Daten einzufügen
nPos -= 1

RETURN nPos

nPos := AddData(oEnv, nPos, @cHtml, ;
AsString(recno()), ;

field->partno, ;
field->producer, ;
field->computer, ;
field->cputype, ;
field->cpucount, ;
field->price, ;
field->image)

dbSkip()
enddo
oEnv:CloseDataSource()

// Cargo für User-Werte setzen
SetValue(@cHtml, “WAA_CARGO”, cCargo)

// sende dynamische page
oHTML:header(cHtml)
RETURN True

// Tabellenzeile ab nPos hinzufügen und mit // Daten
füllen
STATIC FUNC AddData(oEnv, nPos, pcHtml,

cRec, cPartNo, cProducer, cComputer,
cCpuType, nCpuCount, nPrice, cImage)

LOCAL cTemp:=””, cChkName

// checkbox Name pro Satz: Check1...Checkn
cChkName := “Check”+cRec
cTemp += ‘<TR>’+_LF
cTemp += ‘<TD WIDTH=67><P><DIV

ALIGN=”CENTER”>’+_LF
cTemp += ‘<TABLE WIDTH=13 BORDER=0

CELLSPACING=0 CELLPADDING=0>’+_LF
cTemp += ‘<TR>’+_LF
cTemp += ‘<TD><INPUT ID=”FormsCheckbox1”

TYPE=CHECKBOX NAME=”’+cChkName;
+’”VALUE=”’+cRec+’”></TD>’+_LF

cTemp += ‘</TR>’+_LF
cTemp += ‘</TABLE>’+_LF
cTemp += ‘</DIV></TD>’+_LF

// Daten
cTemp += ‘<TD VALIGN=TOP

The name and value of the check box includes the current
record number. This way it is possible to determine for a marked
check box the respective record number.

The Order button click in the Article Browser will result in
the “DoOrderForm“ function call over DoDispatch().

Within the DO WHILE loop the state of each checkbox on the
page is verified. Since the checkbox name contains the record
number, you can use it as a reference. Analyzing the check boxes
on the server side has a big disadvantage that all records must be
skipped and all check box states determined. This results in a
slow response. This behavior is avoided in the next application
by performing the check box validation on the client side.

Next, generates the function the dynamic Order page. The
page contains controls with the names VNAME, NNAME
etc… Their values are inserted into the HTML string by the
SetValue() function.

Internet Shopping (example 4)

As already mentioned in chapter 3.3, the state of the check boxes
is determined in this example on the Client side. Thus the
response is substantially improved. In order to achieve this, Java
Script must be inserted into the HTML string by the function
AddData().

Each check box has a corresponding onClick Java Event.
Clicking the check box will trigger a call to the Java function
CheckSelected.

The Script for the CheckSelected() function is inserted into
the HTML string by DoArtikel():

24 Software Development Techniques 01/2000

// Bestellformular ausgeben
FUNC DoOrderForm(oHtml, oContext)
LOCAL cHtml, nPos, oEnv
LOCAL cCargo := oHtml:getVar(“WAA_CARGO”)
LOCAL cOrder:=””, cChkName
LOCAL cCustID

oEnv := SetHomeEnv(WAA99, “waa99.ini”)
if ! oEnv:OpenDataSource(“COMPUTER”,

{“COMPUTER”}, “PRODUCER”, “FOXCDX”,
oHtml)

SendMsg(oHTML, “Daten-Fehler”, ;
+”Kann Datenbank nicht öffnen”)

RETURN True
endif
cCustID := GetCargo(oHtml)[1]
dbGotop()

// alle markierten Einträge suchen
do while ! EOF()
cChkName := “Check”+AsString(recno())
if ! empty(oHtml:getVar(cChkName))
cOrder += field->partno+” “ ;

+rtrim(field->computer)+_LF
endif
dbSkip()

enddo
cHtml := ;

oEnv:LoadHtmlFile(“bestellung.html”, ;
False, oHtml)

SetListSelect(@cHtml, “ANREDE”, ;
field->anrede)

SetValue(@cHtml, “VNAME”, field->vname)
SetValue(@cHtml, “NNAME”, field->nname)
SetMleValue(@cHtml, “mleORDER”, cOrder)
SetValue(@cHtml, “WAA_CARGO”, cCargo)

oEnv:CloseDataSource()
oHTML:header(cHtml)
RETURN True

// Tabellenzeile ab nPos hinzufügen und mit
// Daten füllen
STATIC FUNC AddData(oEnv, nPos, pcHtml,

cRec, cPartNo, cProducer, cComputer,
cCpuType, nCpuCount, nPrice, cImage)

LOCAL cTemp:=””, cChkName, cScript

// checkbox Name pro Satz: Check1...Checkn
/* <td><input type=”Checkbox”

name=”Check34” value=”34”
onclick=”CheckSelected(this.form,
this.form.Check1)”></td>

*/
cChkName := “Check”+cRec
cScript :=

‘onclick=”CheckSelected(this.form,
this.form.’+cChkName+’)”’

cTemp += ‘<TR>’+_LF
cTemp += ‘<TD WIDTH=67><P>;

<DIV ALIGN=”CENTER”>’+_LF
cTemp += ‘<TABLE WIDTH=13 BORDER=0

CELLSPACING=0 CELLPADDING=0>’+_LF
cTemp += ‘<TR>’+_LF

cTemp += ‘<TD><INPUT ID=”FormsCheckbox1”
TYPE=CHECKBOX NAME=”’+cChkName+’”
VALUE=”’+cRec+’” ‘;
+cScript+’></TD>’+_LF

cTemp += ‘</TR>’+_LF
cTemp += ‘</TABLE>’+_LF
cTemp += ‘</DIV></TD>’+_LF

dbGotop()
do while ! EOF()
// Daten hinzufügen
nPos := AddData(oEnv, nPos, @cHtml,

AsString(recno()), ;
field->partno, field->producer, ;
field->computer, ;
field->cputype, field->cpucount,;
field->price, field->image)

iCnt++

WIDTH=71><P>’+cPartNo+’</TD>’+_LF
cTemp += ‘<TD WIDTH=229><P>’ ;

+cProducer+’
’+cComputer ;
+’
’+cCpuType ;
+’
’+AsString(nCpuCount);
+’</TD>’+_LF

cTemp += ‘<TD VALIGN=TOP WIDTH=82><P>’ ;
+AsString(nPrice)+’</TD>’+_LF

if file(oEnv:ServerImagePath()+cImage)
cTemp += ‘<TD VALIGN=TOP WIDTH=149><P>’ ;

+’<IMG ID=”Picture1” HEIGHT=100
WIDTH=100 SRC=”’ ;

+oEnv:GatewayImagePath()+cImage ;
+’” VSPACE=0 HSPACE=0 ALIGN=”TOP”

BORDER=0> </TD>’+_LF

else
cTemp += ‘<TD WIDTH=149> </TD>’+_LF

endif
cTemp += ‘</TR>’+_LF
pcHtml := stuff(pcHtml, nPos, 0, cTemp)
nPos += len(cTemp)
RETURN nPos

In addition a hidden variable WAA_SELECTED is created in
the HTML code. This variable is used to store the select string
which consists of the values (record numbers) of the marked
check boxes and is determined in the Java function
CheckSelected(). This string is then analyzed in
DoOrderForm().

Special features in example No4

Setting the input focus

When an HTML form is displayed, the input focus should be on
an input control. This can be achieved in Java Script in the
HTML code. In NetObjects it is done in the layout
Properties/HTML/Between head tags, where LOGINFORM is
the name of the form tag and PWORD the name of the HTML
form control to be focused.

The function SetOpenFocus() must be called when the page is
loaded. For this purpose the Java onLoad Event is inserted into
the Body tag.

Properties/HTML/Inside Body tag.

Call to Java Script on the server

Java Script can also be executed without inserting of the Script
directly into the HTML code. Instead the HTML code should
provide the name of the script file.

This Java Script displays the date and the daytime. In this exam-
ple the function is called by clicking the clock image. To do so
an image is created in NetOjects and the following entry in the
Properties HTML/Inside tag is made:

SayDayTime() is a Java Script function contained in the
file./java/daytime.js. The script file should be placed within the
Home directory of the web server.

Graphics as Submit Buttons

On the page MainMenu there are two graphic images which are
used as Submit Buttons. This is accomplished by the following

onClick entry in NetObjects graphic image Properties
HTML/Inside:

SubmitForm() is a Java Script function that takes the XBase DLL
function name as parameter. The Java Script function is entered
in the layout Properties HTML/Between Head tags:

The hidden variable WAA_ACTION is used to store the XBase
function name and the Submit() function will make a call to the
WAA Gateway. This is the same procedure as using a Submit
Button.

Figure 4: Graphics as Submit Controls

Internet Shopping with Frame page (example 5)

The problem with article selection in previous examples was that
the Order button becomes visible only after scrolling down. In
this example the article selection consists of 3 frames with only
the body frame (article representation) to scroll. In the left and
in the upper frames there are different type order buttons that
are always visible.
The article page code is in four HTML files: artikel.html,
left_artikel.html, header_artikel.html and body_artikel.html. The
artikel.html contain the frame definition:

25Software Development Techniques 01/2000

<script language=”JavaScript”> <!—
function SetOpenFocus(){
document.LOGINFORM.PWORD.focus() ;

} //—> </script>

<BODY onLoad=”SetOpenFocus()”>

<script language=”JavaScript”
src=”./java/daytime.js”
type=”text/javascript”> </script>

onClick=”SayDayTime()”

onClick=”SubmitForm(‘DoArticle’)”

function SubmitForm(cAction){
document.MENUFORM.WAA_ACTION.value =

cAction ;
document.MENUFORM.submit() }

dbSkip()
enddo
oEnv:InsertScript(@cHtml, ;

“CheckSelected.js”, ;
oHtml, {{“#ELEMENTS”, AsString(iCnt)}})

<HTML>
<HEAD>
<TITLE>Artikel</TITLE>
<FRAMESET COLS=”152,*”>
<FRAME NAME=”left”

SRC=”./left_artikel.html”
SCROLLING=AUTO MARGINWIDTH=”2”
MARGINHEIGHT=”1” BORDER=5 NORESIZE>

<FRAMESET ROWS=”121,*”>
<FRAME NAME=”header”

SRC=”./header_artikel.html”
SCROLLING=AUTO MARGINWIDTH=”2”
MARGINHEIGHT=”1” BORDER=5 NORESIZE>

<FRAME NAME=”body”
SRC=”./body_artikel.html”
SCROLLING=AUTO MARGINWIDTH=2
MARGINHEIGHT=2>

Each frame behaves like an independent HTML page. All frame
pages have one form tag of the same name and same hidden
variables. To make a Java Script function call within a frame, you
must define it in the frame HTML file.

In the left Frame the Order button is a graphic image that
has a Java Script function assigned as the onClick event. This in
turn will call the Submit() function. On the XBase page the vari-
ables will be queried. However, the query with:getVar(...) always
refers to the form sending the Submit, and in our case the vari-
ables would be empty. The problem is that the article selection is
made in the Body Frame and the result string is only filled in by
the hidden variables of the Body Frame. The same applies to the
WAA_CARGO variable declared in the XBase code.

There are now 2 possibilities:
The frame control that should send the Submit would inste-

ad pass it on to the Body Frame.
The values of the hidden variables of the Body Frame are

copied into the variables of the Frame sending the Submit.
For ordering we choose the first case. This looks like
this: the Submit Graphic in the left Frame or the Submit
Button in the Top Frame use the onClick Event:

The Java Script function DoBestellen() (must exist in both
Frame HTML files) calls an onClick Event for the Submit
Button of the Body Frame:

Possibility 1.

Possibility 2: copying the values of the variables

Now we are ready to produce Dynamic Frame HTML pages.

As discussed earlier, in our case the individual Frame HTML
pages are called by artikel.html. However, since the dynamic data
is shown in the Body Frame, the Body Frame page must be writ-
ten over as HTML file for each service request. Because several
users can send requests at the same time, the article.html should
be able to distinguish between several Body Frame pages. For
that reason each temporary Frame page file gets a timestamp as
a part of the file name. The file artikel.html is loaded as dynamic
string in which the temporary Frame file names are inserted. To
prevent the hard disk ‘pollution’ all temporary HTML files older
than 1 minute are deleted at the function start:
oEnv:EraseTempHtml(“xx*.html “).

Conclusion

Past experience has shown that design of complex Web sites
requires substantially more time. Development cycle will increa-
se even more if you want your Web application to run on any
Web Browser. It is reasonable to design for MS Internet
Explorer 4.0 and Netscape 4.0, which became de facto stan-
dards. Netscape is less compatible with HTML 4 compared to
MS IE, which is not fully compatible too. Each browser has spe-
cific extensions, which in practice means that some nice things
possible with one Browser may not work with another. The
point is to test the application with different browsers and find
browser-specific solutions, which of course can take a lot of
time.

In the above examples we learned how easy it is to create
web applications using XBase++ and WAA Server from Alaska
Software and an HTML form designer. This also works without
knowing much about HTML. The automatic HTML code gene-
ration makes it possible to grow into “HTML“ by analyzing it.

DS-Datasoft, Dieter Stelzner

26 Software Development Techniques 01/2000

function DoBestellen() {
parent.body.document.LAYOUTFORM.pbBestellen

.click()}

function DoBestellen() {
var oLForm = parent.left.document.LAYOUTFORM ;
var oBForm = parent.body.document.LAYOUTFORM ;

oLForm.WAA_ACTION.value = “DoOrderForm” ;
oLForm.WAA_CARGO.value =

oBForm.WAA_CARGO.value;
oLForm.WAA_SELECTED.value =

oBForm.WAA_SELECTED.value ;
oLForm.submit() }

FUNC DoArticle(oHtml, oContext)
LOCAL cHtml, nPos, oEnv, iCnt:=0
LOCAL cFileB, cFileL
LOCAL cStamp
LOCAL cCargo := oHtml:getVar(“WAA_CARGO”)

oEnv := SetHomeEnv(WAA99, “waa99.ini”)
// temp. Html-Dateien löschen
oEnv:EraseTempHtml(“xx*.html”)

usw....

cHtml := ;

</FRAMESET>
</FRAMESET>
</HEAD>
</HTML>

<...onClick=”DoBestellen()”>

oEnv:LoadHtmlFile(“body_artikel.html”,False,oHtml)

usw....

cStamp := “xx”+AsString(seconds())

// temp. Dateinamen für body_artikel.html =
// xx123456body_artikel.html

cFileB := cStamp+”body_artikel.html”
oEnv:WriteHtmlFile(oEnv:HomePath()+cFileB, cHtml)

// temp. Dateinamen für left_artikel.html =
// xx123456left_artikel.html
// Verweis auf body mit temp-namen ersetzen
cHtml := ; oEnv:LoadHtmlFile(“left_artikel.html”,;

True, oHtml)
cHtml := strtran(cHtml,body_artikel.html”, ;

cFileB, , 1)
// left dateinamen umbenennen
cFileL := cStamp+”left_artikel.html”
oEnv:WriteHtmlFile(oEnv:HomePath()+cFileL,;

rtrim(cHtml))
// in dynam. Page die Verweise auf die //temp. Dateien
ersetzen
cHtml := oEnv:LoadHtmlFile(“artikel.html”,, oHtml)
cHtml := strtran(cHtml, ;

“body_artikel.html”, cFileB, , 1)
cHtml := strtran(cHtml, left_artikel.html”,cFileL,, 1)

// sende dynamische page
oHTML:header(cHtml)
RETURN True

Undocumented VO

By Rod da Silva
In my column last issue I began what I
promised would be a series of articles
uncovering the mysteries of VO’s super-
ior class/object model. While I have lots
to talk about on that subject, I have deci-
ded to postpone that information until
next time so that I can describe a new
undocumented feature that has found its
way into the recently released VO 2.5a
patch. I consider the new feature impor-
tant enough and useful enough to virtu-
ally every serious VO developer, that I
thought it warranted preempting my
scheduled column on VO’s internal
class structures. Indeed if you have
been bitten at any time with a seemingly
random VO dynamic memory error such
as the dreaded 5333, you will want to pay
special attention to this month’s article.

As always, I hope you find the information that follows useful.
However, I would be remiss if I did not restate my standard dis-
claimer that the information provided here is by definition undo-
cumented (or poorly documented at best) and is not in any way
supported by Computer Associates. If you use any, or all of this
information, you do so at your own risk. Having said that, I per-
sonally feel confident that given the usefulness of what I am
about to show you, I would be very surprised if CA develop-
ment will ever remove this particular feature from the product.

HEEEELLLLLPPPPPP!!!!!!

Virtually everybody’s seen them. They are almost impossible to
reproduce. Horror stories about them in the various on-line VO
forums abound. People plead for help. CA development insists
the problem is in your code. It is of course, the 5333 error (pre-
viously know as the 4660). These errors—effectively system
trapped GPFs—have caused no end of trouble for a number of
otherwise excellent VO applications, especially since VO 2.5 was
released. And no one seems to know where they come from or
more importantly how to get rid of them.

The problem with these errors, as anyone who has tried to
locate the cause of one will tell you, is that they are almost
impossible to recreate at will. They appear on some machines
(often the client’s machine) almost immediately, albeit randomly,
while never showing up on other machines (like the developer
machines). Furthermore, the cause of them is almost never
anywhere near where they actually surface (often 1000s of lines
of code away), making finding them at lot like looking for a
needle in a haystack.

Well, if you are being plagued by these errors, the recently
released VO 2.5a patch offers new hope for locating and squas-
hing them once and for all!

A Time Bomb Waiting To Go Off

In order to give context to this discussion we are going to requi-
re a dynamic memory bug. Consider the following code:

This code seems to work great. It demonstrates the use of the
RegisterKID() function. By registering the static pointer p,
which points to the dynamic object o, with the VO runtime,
when VO moves the object in memory the static pointer’s value
will automatically be updated to point to the new position of the
dynamic object. This can be clearly seen in the following output:

{(0x0078)0x01040138} CLASS ERROR , 0x01040138
{(0x0078)0x02041124} CLASS ERROR , 0x02041124
Press any key to continue...

Notice how the address values of the object and the pointer
match on the first line (i.e.; 0x01040138) and then again on the
2nd line (i.e.; 0x02041124) after the CollectForced() call forced
the object to move in memory. This shows how the registered
pointer was automatically updated by VO’s runtime as it should
have been.

As innocent as this code looks, there is a problem lurking. To
demonstrate the problem consider what would happen if the
garbage collector kicked in one line earlier as follows:

The output from this program is as follows:

{(0x0078)0x01040138} CLASS ERROR , 0x01040138
{(0x0078)0x02041124} CLASS ERROR , 0x01040138
Press any key to continue...

Notice how the addresses reported on the second line are diffe-
rent and that while the object’s address has changed from the
first to the second line, the pointer’s contents have not. This
indicates that the when the garbage collection kicked in due to
the call to CollectForced(), the object was moved but the poin-
ter p pointing to the object was not correspondingly updated.
This makes sense since the registration of the KID does not take
place until after the call to CollectForced(), effectively too late to
help in this situation since the pointer being registered is poin-

27Software Development Techniques 01/2000

FUNCTION Start
LOCAL o AS OBJECT
LOCAL p AS PTR
o := Error{} // some Object
p := PTR(_CAST, o)

// static memory holds pointer to dynamic type ? o,
“,”, p // addresses are the same

RegisterKID(@p,1,.F.) // register the KID
CollectForced()

// moves object, pointer updates automatically
? o, “,”, p // addresses are still the same!!

WAIT
RETURN

FUNCTION Start
LOCAL o AS OBJECT
LOCAL p AS PTR
o := Error{} // some Object
p := PTR(_CAST, o)

// static memory holds pointer to dynamic type
? o, “,”, p // addresses are the same
CollectForced()

// moves object, pointer is NOT updated!
RegisterKID(@p,1,.F.)

// register pointer on object that is not there
? o, “,”, p // addresses are different!!!
WAIT

RETURN

ting to where the object use to be!
You might be thinking to yourself that this example is quite

contrived. And prior to VO 2.5 I would probably agree with
you. Most developers wouldn’t use CollectForced() in this way.
However, with VO 2.5’s multi-thread support the potential for
this to happen in VO 2.5 multi-threaded applications is very real
since the garbage collector (GC) can and will kick in arbitrarily
in other threads.

Another way to think about this is as follows. In the exam-
ple above the CollectForced() call represented the arbitrary trig-
gering of the GC. However, from within a multi-threaded appli-
cation, it isn’t necessary to explicitly call CollectForced()to have
this problem occur. Instead all that needs to happen in a multi-
threaded application is a thread context switch to occur in the
same place where the CollectForced() now appears above (e.g.;
between the pointer assignment and the call to RegisterKID()).
If a thread context switch does occur at precisely this spot AND
the GC kicks in in the other thread (a very real possibility if not
an eventuality given the preemptive nature of Win32 operating
systems), the problem we witnessed above will in fact occur.
This is just one more example of how multi-threaded program-
ming is not for the faint of heart.

Now most of you probably don’t have much cause to use the
RegisterKID() function in your normal VO business application
development. However, VO’s internal class libraries use this
function all the time. For example, if you own the VO 2.5 ver-
sion of the SDK, it includes the following source code for the
method EventContext:Init(), which is called each time you crea-
te any VO GUI Window since VO’s Window class inherits from
EventContext. The code as it appeared in the 2.5 version of the
SDK looked like:

Once again, while the possibility seems remote, we have the
potential for big problems with this version of the
EventContext:Init() method if the GC kicks in in the indicated
spot. While this is virtually impossible in a single threaded appli-
cation, the possibilities become very real in a multi-threaded
application since it is quite conceivable that a thread context
switch will eventually occur at precisely the right spot, i.e.; after
the pointer strucSelfPtr.ptrSelf has been assigned the address of
the dynamic object self, but before the KID gets registered for
that pointer.

To be fair, CA officially stated that CAVO2GUI.DLL (the
DLL that contains VO’s GUI class library), along with most of
the other class library DLLs, was NOT thread safe when VO 2.5
was released. This implies that when using the GUI classes,
developers should not have two threads of execution occurring
at the same time within these classes. However, the above pro-
blem can occur even if only one thread is running in the GUI
classes, and one or more threads are running in non-GUI code
(such as business logic), a common occurrence in multi-threaded
VO applications. Again, all that is required to have the problem

occur is that a thread context switch occur in the indicated spot,
and the GC kick in in that other thread. And when trouble does
strike, it is usually miles away in application code with no clue as
to where to start looking for the problem – the hallmark of the
classical dynamic memory bug. As such I considered this a bug
and reported it to CA shortly after VO 2.5 was released.

Fortunately, the solution to this problem is an easy one.
Consider the following updated version of my original sample
above:

The fix to the problem is to simply ensure you register the KID
before you assign the address of the dynamic data type to it. By
first registering the KID prior to assigning it a dynamic data type
address, you are ensuring that any GC that occurs after the regi-
stration and that causes the underlying dynamic data type to
move in memory, will automatically cause the address held by the
pointer to be updated accordingly. Of course if the GC kicks in
even before the address of the dynamic data type has been
assigned then no harm is done, and the assignment will simply
pick up the new address of the dynamic data type.

Accordingly, the source code to the EventContext:Init()
method in the VO 2.5a SDK has been adjusted to include this
fix as follows:

This represents a truly thread safe version of the method (con-
sidered only in the context of the RegisterKID() call - CA still
does not warrant its class libraries as being thread safe in VO
2.5a) since no matter what line of the above code a thread con-
text switch might occur on, the addressed contained in the poin-
ter will always be that of the dynamic object.

So What?

For most of you this article has likely border on next to useless
since you are probably not writing multi-threaded applications.

28 Software Development Techniques 01/2000

method Init() class EventContext
local strucSelfPtr as SelfPtr
VTrace VBorder

super:Init()

RegisterAxit(self)
strucSelfPtr := MemAlloc(_SizeOf(SelfPtr))
strucSelfPtr.ptrSelf := ptr(_cast, self)

// If GC kicks in here we have problems
RegisterKid(@strucSelfPtr.ptrSelf, 1, false)
ptrSelfPtr := strucSelfPtr

FUNCTION Start
LOCAL o AS OBJECT
LOCAL p AS PTR
o := Error{} // some Object
RegisterKID(@p,1,.F.)

// register the KID before assigning pointer!!
p := PTR(_CAST, o)

// static memory holds pointer to dynamic type
? o, “,”, p

// addresses are the same
CollectForced()

// moves object, pointer automatically updated!
? o, “,”, p

// addresses are the same!!
WAIT

RETURN

method Init() class EventContext
local strucSelfPtr as SelfPtr
VTrace VBorder
super:Init()

RegisterAxit(self)
strucSelfPtr := MemAlloc(_SizeOf(SelfPtr))
// Register the KID before
// the assignment takes place!!
RegisterKid(@strucSelfPtr.ptrSelf, 1, false)
strucSelfPtr.ptrSelf := ptr(_cast, self)
ptrSelfPtr := strucSelfPtr
return self

For you, none of what I am talking about explains your particu-
lar 5333 errors. However, if you stick with me a little while lon-
ger I promise you a just reward.

The above example of a manufactured dynamic memory bug
wasn’t just made up. It actually came from a real-world situation
I was running into when developing a thread-safe 2.5 version of
VOCOM, my VO 3rd-party product that allows you to create
COM/ActiveX servers of all kinds. In fact, the exact sample
above was devised in order to show CA development the pro-
blem I was having with respect to threads and my incorrect use
of RegisterKID(). What was enlightening to me was that the
possibility to incorrectly use this function (i.e.; assign the address
of a dynamic memory data type to a static pointer before calling
RegisterKID() on that pointer, instead of after), was so easy to
do that it struck me that VO’s own development team may have
made the error themselves. (You have to remember that prior to
VO 2.5, VO’s runtime was not designed to be thread safe and so
any multithreading within a VO application was officially unsup-
ported by CA. Thus, this incorrect use of RegisterKID() never
caused a problem since no one was writing multithreaded appli-
cations in VO 2.0.) A quick check confirmed several places in
various class libraries and in the RDD subsystem where this very
incorrect technique was being used and so I promptly reported
these hidden time bombs to CA development using the very
sample shown above.

However, as I was preparing the bug report to submit to CA
something very interesting occurred to me. Consider the follo-
wing slightly modified version of the original problematic code:

The output from this program is as follows:

{(0x0078)0x01040138} CLASS ERROR , 0x01040138 , ERROR
{(0x0078)0x02041124} CLASS ERROR , 0x01040138 , ERROR
Press any key to continue...

Basically, the only thing I have added here is some logic to actu-
ally try and use the pointer p which is declared as a pointer to a
_VOOBJECT structure which in turn points to that object’s
_VOCLASS class definition structure (in this case Error’s).
[Note: See my column in the 04/99 issue of SDT for more
information on the undocumented structures _VOCLASS and
_VOOBJECT.]

Study the program and its output very carefully. Notice anything
strange beyond the obvious problems highlighted earlier? What
probably went unnoticed by you, and what makes this particular
sample relevant to a discussion of dynamic memory problems
such as 5333s in general, is the very fact that this program does
not crash! Clearly, the address contained by p does not match
that of o in the 2nd line for the reasons give above. However,
what was confusing at first to me was why the word “Error”
continued to appear at the end of the 2nd line? This value – the
result of the expression p.pClassInfo.symClassName – conti-
nued to evaluate to Error even when the actual Error object had
moved to a new location!! This was a very interesting observa-
tion, which gave me real insight into the reason why 5333s where
so incredibly difficult to locate.

What’s actually going on here is that while the Error object
has indeed moved to a new location, the original memory loca-
tion it use to reside at (and to which p still points), while having
been freed so that the memory can be reused, has not been zero-
ed! This means that until the memory does get reused, a memo-
ry image of the Error object will remain at that position in
memory. This is why the expression
p.pClassInfo.symClassName still reports Error since the memo-
ry at that address still holds a complete image of the Error
object as it was prior to it moving.

If you think about this for a moment you start to catch a
glimpse of the debugging horrors this can cause. Instead of
crashing when accessing this stale object, the program continues
on oblivious that anything has gone wrong. If you extrapolate
this example out a little, and imagine a more interesting object
than Error, where the object’s instance variables are being upda-
ted, the above scenario would report the stale (pre-relocation)
instance variable values causing you to wonder if you have gone
mad. “I just updated the instance variables of the object above
and yet the debugger is showing me I didn’t! What the #$%# is
going on?”.

Even worse, is that BOOM all of a sudden an object you
have been working with all along (which is actually stale although
you don’t know it) just simply disappears on you. “There it is in
the debugger on line 101, and when I single step to line 102,
POOF! it is gone!!” Sound familiar? The reason this can hap-
pen is that stale memory that you are actually reading has, if you
recall, been released and is available for reuse by the VO runti-
me’s dynamic memory manager. At any point that dynamic
memory is required the system can and will overwrite that
memory with new unrelated data causing the data you where
erroneously working with to simply get blown away. I have even
seen the case where one stale object gets complete (and perfect-
ly) overwritten with a new object of a different class. The result
was that the debugger was showing that variable o was an object
of class “SomeClass” on line 250 and then an object of class
“SomeOtherClass” on line 251 after a simple single step!! Of
course, running the program outside of the IDE or even within
the IDE but not under the debugger, causes GC to kick in at a
slightly different time and the problem will not show up at that
point (if at all). Oh the joys of dynamic memory problems….
It is enough to make you want to give up software development
and become a pastry chef!

WipeDynSpace To the Rescue!

To get right down to the essence of the problem, it is the fact
that above program doesn’t crash on us when the stale memory

29Software Development Techniques 01/2000

STRUCTURE _VOOBJECT
MEMBER pVTable AS PTR
MEMBER pClassInfoAS _VOClass

STRUCTURE _VOCLASS
MEMBER pNeverMindAS PTR
MEMBER synClassName AS SYMBOL

FUNCTION Start
LOCAL o AS OBJECT
LOCAL p AS _VOOBJECT
o := Error{} // some Object
p := PTR(_CAST, o)

// static memory holds pointer to dynamic type
? o, “,”, p, “,”, p.pClassInfo.atomClass

// everything is good
CollectForced()

// moves object, pointer is NOT updated!
RegisterKID(@p,1,.F.)

// register pointer on object that is not there
? o, “,”, p, “,”, p.pClassInfo.atomClass

// problems!!!
WAIT

RETURN

pointed to by p is accessed that creates the problem in the first
place. If only there was someway to get VO to raise an error
immediately when this stale memory is accessed, we would be
able to bring the symptom of the problem very much closer to
its cause, and therefore make locating dynamic memory bugs
infinitely easier to locate.

As I observed the above phenomenon it occurred to me that
all of these problem “masking” issues would go away if only VO
zeroed the dynamic memory it released. This would then cause
any program that accessed stale memory to error sooner since
presumable it would not be expecting the memory to be zeroed.
Obviously, there would be a price to pay for this “feature” since
it would actually slow down the application slightly to have to
zero all dynamic memory that is released by the system.
However, I reasoned that the benefit zeroing memory would
have in terms of being able to more easily debug the application
could outweigh any downside to performance in the application.
I think most of us would accept our application running ever so
slightly slower, if in return we could get rid of our 5333s.
Fortunately, the obvious solution of a dynamic runtime registry
setting occurred to me which would allow developers to debug
their software in a slightly slower environment whereby released
memory is being zeroed, without slowing down the final delive-
red production system on a client’s machine. I therefore made a
request that VO development add an undocumented registry
setting that will cause VO’s runtime to write CHR(0)’s to all
dynamic memory the moment it is released. I am happy to
report that CA development accepted my proposal and that
beginning with VO 2.5a the following registry setting will con-
trol whether VO’s runtime will zero released dynamic memory
or not.

REGEDIT4

[HKEY_CURRENT_USER\Software\ComputerAssociates\C
A-Visual Objects Applications\Runtime]
“WipeDynSpace”=dword:00000000

The default as shown is 0x00000000, which represents the cur-
rent VO behavior not to zero released memory. By simply
adding the above key to your registry (its not there by default)
and setting the value instead to 0x00000001 all dynamic memo-
ry will be automatically zeroed by the VO runtime upon release.

If you do this and run the above problematic code again, you
get the satisfying result of a GPF on the 2nd line since the
expression p.pClassInfo.symClassName will cause a null pointer
to be dereferenced.

I tell you quite truthfully, I was never more happy to see a
GPF in all my life then when I ran the above program with the
new registry setting in place! With the GPF result, identifying
the underlying problem in this case becomes straight forward.

Conclusion

If you have been traumatized by incessant dynamic memory
errors of the 5333 variety, then VO 2.5a offers real hope for you.
Simply set the above registry setting to 0x00000001 permanent-
ly on your development machine and start seeing some of those
5333 errors begin to reveal themselves to you much closer to
their point of origin. We all know that if you can reliably repro-
duce a problem then you can generally readily fix it. This single
registry setting, for me, is without doubt the most important
addition to VO 2.5a since it brings to my attention dynamic
memory problems much sooner then they otherwise would be
(if at all). The feature will go along way to stabilizing a great
many VO applications currently begin bitten by dynamic memo-
ry problems.

If you have been thinking about moving back to VO 2.0 rat-
her than proceeding to VO 2.5a because your confidence in VO
2.5 has been shaken by a recent a rash of 5333s, I recommend
giving 2.5a a try and seeing if this new undocumented registry
setting doesn’t help you solve some of your problems. While its
true that you still have some debugging to do to find the actual
cause of your dynamic memory problems, at least with this new
registry setting you have a fighting chance. Also, if you are try-
ing to write a multi-threaded VO application in VO 2.5, I stron-
gly recommend moving to VO 2.5a for the many bug fixes it
contains with respect to its internal use of the RegisterKID()
function as mentioned above.

Until next time…

30 Software Development Techniques 01/2000

Dieter Crispien

Cool New Menus - Part 2

In part 1 (see SDT 1/99), I showed how
menu entries are created which contain
bit-maps instead of text. In this issue, I
want to demonstrate how one can
display both text and bitmaps in a menu
entry. One is then fully prepared for the
fashionable innovations, which Office97
has made familiar.

Nothing works without ownerDraw
As it often comes, if one wants to deviate from the standard,

MicroSoft enables us to take control of the symbol work oursel-
ves. This can be found in the MSDN Library via the keyword
MFT_OWNERDRAW. In order to assign this attribute to a
MenuItem, we create a sub-class of MenuItem, which we use
after the window, and its menu have been created.

When manual drawing comes into play later, it is crucial to store
the information given to the user-defined structure pMyItem.
This is done via the dwItemData member, as can be seen above.
With the Init method shown above, it is essential that it is called
at the end of the initialization phase of a window. Therefore we
intercept the following message in the Dispatch() of the window,
which owns the menu:

And in ChangeCoolMenu(), we replace the menu items with our
own CoolMenuItems.

Our new Coolmenu class (inherited from the menu) then adjusts
the desired MenuItems:

For all of the items we have set to MFT_OWNERDRAWn, we
need to respond to the WM_MEASUREITEM and WM_DRA-
WITEM messages. When other routines need to reset the
ownerdraw attribute, this can also be done when the message
WM_INITMENUPOPUP is processed.

Linking ToolbarButtons with our
MenuItems
The Menu Editor connects ToolbarButtons to MenuItems.
These ToolbarButtons are taken from a bitmap ribbon, either
from VO’s standard ribbon or self-drawn ribbon. For our
MenuItems, however, we need these as ImageList items.
Therefore we make it as simple as for ourselves, and stuff the
existing ToolBar into an ImageList.

31Software Development Techniques 01/2000

METHOD Init(hMenuPopup,nID,lHasBitmap) CLASS
CoolMenuItem

LOCAL sMii IS _winMenuItemInfo
LOCAL pMyItem AS MyItem
Default(@lHasBitmap,FALSE)
SELF:lHasBitmap := lHasBitmap
IF hMenuPopup == NULL_PTR
// Error

ELSE
GetMenuItemInfo(;
hMenuPopup,nID,FALSE,@sMii)
SELF:dwMenuID := nID
SELF:dwStatus := sMii.fstate
SELF:dwType := sMii.fType
IF SELF:lHasBitmap
pMyItem := ;
MemAlloc(_sizeof(MyItem))
MemClear(pMyItem,;
_sizeof(MyItem))
// change the item to an owner-drawn item
// and save the address of the
// item structure as item data
sMii.fMask := MIIM_TYPE //_Or(MIIM_TYPE,MIIM_DATA)
sMii.fType := ;
MFT_OWNERDRAW
SELF:dwType := sMii.fType
sMii.dwItemdata := ;
DWORD(_CAST,pMyItem)
SetMenuItemInfo(;
hMenuPopup, nID, FALSE,;
@sMii)

ENDIF

ENDIF

METHOD Dispatch(oEvent) CLASS dwCustomer
LOCAL dwMsg AS DWORD
dwMsg := oEvent:Message
DO CASE
CASE (dwMsg == WM_PARENTNOTIFY)
IF LoWord(oEvent:wParam)= WM_CREATE

SUPER:Dispatch(oEvent)
SELF:ChangeCoolMenu(oEvent)
RETURN 0L

ENDIF
// any extensions go here

METHOD ChangeCoolMenu(oEvent) CLASS dwCustomer
IF SELF:menu != NULL_OBJECT .and. ;

IsMethod(SELF:menu,#ChangeCoolMenu)
SELF:menu:;
ChangeCoolMenu(oEvent,SELF)

ENDIF
RETURN 0L

METHOD ChangeCoolMenu(oEvent,oWin)CLASS CoolMenu
LOCAL sMii IS _winMenuItemInfo
LOCAL hMenubar AS PTR
LOCAL hMenuPopup AS PTR
LOCAL oItem AS CoolMenuItem
LOCAL nID AS DWORD

hMenubar := SELF:handle()
DO CASE
CASE IsInstanceOf(oWin,#DataWindow)
GetMenuItemInfo(hMenuBar,;
IDM_StandardShellMenu_File_ID,FALSE,@sMii)
hMenuPopup := sMii.hSubMenu
FOR nID := IDM_StandardShellMenu_File_Open_ID;

UPTO IDM_StandardShellMenu_File_Exit_ID
oItem := ;
CoolMenuItem{hMenuPopup,;
nID,TRUE}
AAdd(SELF:aCoolItem,oItem)

NEXT nID

// extract from an extended
// ChangeCoolMenu-Method of the CoolMenu-
// Class:
oTB := oWin:Toolbar
oImageList := ImageList{255,{20,16}}
oImageList:Add(oTB:Bitmap)
SELF:oImages := oImageList

The VO Toolbar can hold up to 255 pictures which are each
16x20 (see AppendItem method in CAVO25.Hlp). The MSDN
Library also shows us, that we can add several images to an
ImageList at the same time. The number of pictures is deter-
mined from the total width of the Toolbar bitmap divided by the
size of the individual bitmaps, as described in the help file under
ImageList:Init().

One more extension to CoolMenu’s ChangeCoolMenu method
adds the index for each Item to the appropriate image:

Since VO already does this allocation in the array aTipsText, we
profit from this by writing an access. Then, our Coolmenu
object contains all necessary information for drawing the bit-
maps.

Measuring MenuItems

Before MenuItems are drawn, they are measured. The owner
window receives a message WM_MEASUREITEM and rerou-
tes that to the appropriate event handler, where we fill a structu-
re with the information needed for drawing the MenuItems.
DrawText() (with the DT_CALCRECT parameter) is the essen-
tial function used by the MeasureItem event handler. This cal-
culates the size of the text. We need to pad some space for the
edges (CXTEXTMARGIN), and also for the width of the but-
ton image (oButtonSize:width), and for some distance between
the button and the menu text (CXGAP). In every case, one
should get the item dimensions from the system settings via
GetSystemMetrics() (SM_CYMENU gets the menu height.
SM_CXMENUCHECK gets the width of the standard chek-
kmark, which we will replace with our bitmap, and therefore
must subtract from our total width).

Abb. 1: Dimensions of a MenuItem

Details can be gathered from the figure 1, which I took from the
article of Paul DiLascia [2].

This information is stored in the structure
_winMEASUREITEMSTRUCT, which is defined by VO. In
order to guarantee that we properly fill this structure for the
Drawtype menu, we need to test if the CtlType member of this
structure is ODT_MENU at the beginning of our MeasureItem
routine. The separators require special handling, since they use
only half of the height of a standard Item.

Drawing a MenuItem

After all these painstaking preparations, the MenuItem can be
drawn. After Windows measures the Item to be drawn with the
help of our MeasureItem routine, it sends a WM_DRAWITEM
message to our window, one for each Item. Equipped with the
information in _winDRAWITEMSTRUT, we can really go wild
with this. Colours and 3D edges (raised or pressed) depend on
the itemstate (ODS_GRAYED, ODS_SELECTED, or
ODS_CHECKED). It is also crucial here whether a symbol
should be drawn. Or perhaps an user-defined check mark comes
into play? It doesn’t matter which symbol, it comes back to its
position as represented in fig. 1

The great pain of ownerdrawn programming

Windows is extremely hard on programmers, who have taken
the trouble to program ownerdraw. Not that everything now
works. We still need to re-invent the functionality of the under-
lined letters. The underlinings are displayed, but we need an
additional event handler, which reacts to WM_MENUCHAR.
This example still contains no code for that. This may be deli-
vered subsequently with the next issue of SDT. By the way,
accelerators are actually not affected by the ownerdraw attribute,
which means, they work normally.

The necessary cleanup work

Since we define our own structure for extending the standard
MenuItemInfo structure, we need to release these pointers upon
closing the window.

Colors and fonts

Often the system settings for colors and fonts are forgotten by
commercial applications. Paul DiLascia’s article [2] recommends
using the functions GetSysColor() and GetSystemMetrics() against
the eventuality that the user chooses their own colors and fonts.
Additionally, one should react to the messages WM_SYSCO-
LORCHANGE and WM_SETTINGCHANGE. The most
reliable reaction is still to destroy everything and build it back up
from scratch. This table lists the most important parameters for
GetSystemMetrics() and GetsysColor(), as far as menus are concer-
ned:

32 Software Development Techniques 01/2000

nBID:= AScan(oTB:aTipsText,;
{|x|x[2]=nID})
nButtonID := oTB:aTipsText[nBID,1]
IF nButtonID > 0
AAdd(SELF:aToolbarId,;

{nID,nButtonID})
oItem:nButtonIndex := nButtonID

ELSE
oItem:nButtonIndex := -1

ENDIF
oItem:dwMenuID := nID

COLOR_MENU Menu color
COLOR_MENUTEXT Text color in

Menu-Item
COLOR_HIGHLIGHT Background color

for selected Menu-
Item

COLOR_HIGHLIGHTTEXT Text color for
selected Menu-
Item

SM_CYMENU Height of a Menu-
Item

SM_CXMENUCHECK Width of a Menu
Checkmark

Closing remarks

Many additional problems related to creating ownerdrawn
menus are covered by Paul DiLascia [2]and go beyond the limits
of an introductory article, such as this.

Who now believes that Office97 and Office2000 are all wor-
king with ownerdraw menus, is wrong. For this purpose,
Microsoft created something new: CommandBars. The object
model for these COM Objects is documented in the
VBAOff8.HLP. Unfortunately, these objects can only be used in
the Office applications themselves.

After going through all of the trouble to develop this VO
example, I can easily understand why developers want to stay
away from owner drawn menus, and wait for Microsoft to inclu-
de CommandBars in the ComCtl32.Dll. There is, naturally, no
official promise that this will ever happen.

Nevertheless, I dared dealing with a further customdraw
example and wrote a TreeListView for Cayman, which will be
introduced in the next SDT issue, with versions for VO and for
ClassMate.

Literature
[1] MSDN Library, see under Platform SDK/User
Interface Services/Windows User
Interface/Resources/Menus/Using Menus/Creating
Owner-Draw Menu Items

[2] “Give Your Applications the Hot New Interface Look
with Cool Menu Buttons” by Paul DiLascia, MS System
Journal 1/98.

An excellent article, well worth reading, concerning the trou-
bles of ownerdraw programming. How much the emotions can
be involved, is showed by the following short quotations:

“Too much Windows programming isn´t healthy, you
know”
“... a waste of precious neurons”
“... until my fingers were in danger of carpal collapse.”

Dieter Crispien

Email: DCrispien@dcsoft.de
CompuServe: 100016,1673

33Software Development Techniques 01/2000

From relational to object-oriented data
structures

Michael Zech
Since most developers today must con-
sider existing data, converting relational
data structures to an object-oriented
approach has significant meaning for
those converting to Jasmine. This arti-
cle discusses conversion considera-
tions, beginning with the well-known
and loved DBF files. Also, the Jasmine
Script Utility will be introduced, as a
conversion aid. The utility can be found,
with source, on the accompanying CD.

Introduction
One of the many impressions which I brought home with me
from numerous DevCon99 discussions, was the realization that
VO developers (who still use predominately xBase files for data-
bases), in particular, are interested in Jasmine. Even if the
advantages of a contiguous object oriented approach, both in
the programming environment, as well as with the data structu-
res is approved, some can’t imagine, how this can be realized in
practice.
For this reason, I want to point out in this article, using
the simplest steps possible, how to convert existing rela-
tional data structures into object-oriented ones.

Preparations

In order to present a better overview, beginning with familiar
xBase tables seems best. However, in order to be able to demon-
strate the migration as descriptively as possible with a practical
example, a few conditions need fulfilling however:

• First an existing data structure is needed, which uses a
typical relation. We find this in the
\CAVO25\Samples\GSTutor directory.

• On the object-oriented side, we need a OO database. In
addition to CA-Visual Objects 2.5a, Jasmine should be
installed. The free developer edition of Jasmine 1.21, or
the freely available beta of Jasmine ii from
http://www.ca.com, will work nicely for this.

• A Microsoft VC++ compiler (5.0 or better) is needed,
since Jasmine uses this for compiling the classes. This is
a system requirement for Jasmine.

• Finally, we need a text editor, such as Notepad, which can
create and edit ODQL scripts.

Now, since we have all of the necessary tools, we can begin.
Since our relational data structure will be transmitted to the
Jasmine database server, a place for the object-oriented structu-
res must first be determined.

Here Jasmine serves up a characteristic, the ClassFamilies, which
I have already described in detail in the article “VO meets
Jasmine”. Despite that, a cursory description of the meaning of
class families is in order, and of how one builds them.

A ClassFamily is a grouping of classes sharing, if possible, a
logical context. However, this is not a compelling pre-requisite.
Assuming that a comprehensive business model represents data
for purchases, sales, inventory, and personnel, then a ClassFamily
could be created for each of these groups, and all data classes are
combined according to their respective affiliations.

The principle that every class belongs to a ClassFamily is not
optional. As we will see in the ODQL Scripts, most instructions
involving classes also require the ClassFamily name. On the
other hand, belonging to a ClassFamily does not any affect the
inheritance hierarchy. ClassFamilies are not super classes!

We will create a ClassFamily with the name SDTSamplesCF,
where we can store the converted classes. From DOS, we give
Jasmine the command CreateStore. Since it is possible to capture
such instructions in a batch file under Windows NT, we will.
Since Jasmine is extremely case sensitive, batch files are particu-
larly useful for avoiding typos.

The opposite, to remove ClassFamilies:

Jasmine ii offers additional classes and methods for these admi-
nistration functions, which enables the execution of
ClassFamilies for example by VO applications. The approach
with the command line, as shown above, however remains valid,
and is also better suited for the understanding the current topic.

From the table to the object

When it comes to the creation of table structures, VO devel-
opers, who still trust the venerable dbf format, are quite spoiled.
This is usually done either by exporting from VO’s dbServer edi-
tor, or at run-time from the application. A raft of efficient
methods and functions are available for this. One does not have
to worry about any further aspects of security or administration,
as DBF tables never had these anyway. This comportment
results from the peculiarities in the early days of the PC, where
the xBase file system originated.

With inveterate SQl fans, this comportment would cause at
least a frown, but more likely sheer horror, because relational
database systems (such as Ingres, or MS SQL Server) behave
completely differently in this regard. They have a much different
system of rights. And, furthermore, it is not customary for an

34 Software Development Techniques 01/2000

@Echo Off
rem =======================
rem SDTSamplesCF .CMD
rem =======================

CLS

Echo Creating class familiy...
CreateCF SDTSamplesCF dataStore

@Echo Off
rem================================
rem SDTSamplesCF.CMD

CLS

Echo Delete class familiy...
deleteCF SDTSamplesCF dataStore

application to alter SQL database structures at runtime. The cre-
ation of the data structure is a one event for these systems,
which starts with the design phase. Or at least it should.... After
finishing the design phase, scripts are made, with which the data-
base is automatically set up. SQL serves as the language for these
scripts for relational database management systems (RDBMS).
Since this procedure makes for a chunk of manual work, some
visual design (or CASE) tools (Rational Rose, S-Designer, etc.)
are available.

Jasmine’s behaviour, as an object-oriented database, has
more in common with SQL than with DBF. Altough the data
structure consists of a class hierarchy rather than RDBMS struc-
tures, the installation is still script driven. As a language, ODQL
functions as the object-oriented counterpart to SQL.

The relational basis

As suggested before, we now fall back to the file customer.dbf for
our conversion. The data structure is represented as follows:

As the following mini-program shows, the data structure of a
dbf file can comfortably be selected with few lines of VO code.

Converting the data types
As always, when data is transferred between systems, the
question is which data types will the new system support?
Converting to the data types of the target system is a require-
ment. In our case, this remains the same, as the following com-
parison of the respective data types shows:

Pulling out the documentation, the trained eye immedi-
ately sees that there are a couple of changes to be made.
For the pure conversion of the data structure these dif-
ferences are not particularly large. However, if the data
cannot be transferred in one batch, the data types need to
be well chosen. Fortunately, CA-Visual Objects has an
abundance of functions for converting various data, so
that it conforms with Jasmine’s needs. Describing such a
conversion easily offers sufficient material for an addi-
tional article, therefore we will assume that no data con-
version is needed at the moment, and turn our attention
to script writing, which will create classes to represent
our relational table.

Designing That First Class
In order to clarify the difference between relational tables
and object-oriented classes, I consciously selected a very
simple file: Customer.dbf.

At first glance class design could look quite complicated,
however the details prove to be quite simple. Relational databa-
ses consist of tables, which are divided into fields and records.
The fields describe the characteristics of the data stored in the
records.

Where the relational approach uses tables, the object-orien-
ted approach naturally uses classes, which possess properties.
These properties correspond to the fields of a table. The actu-
al data is stored in the objects, which instantiate the class. For
the current example, the first class design could look like:

Class: CUSTOMER
Properties: CUSTNUM

FIRSTNAME
LASTNAME
ADDRESS
CITY
STATE
ZIP
PHONE
FAX

35Software Development Techniques 01/2000

 Dbf Jasmine
GanzZahlen numerisch Integer
Fließkomma Decimal Decimal, real
Text Character String
Datum Date Date
Logisch Logic Boolean
Binär Memo ByteSequence
Objekte - Object

Column Type Lenght Decimals
Custnum N 5 0
Firstname C 10 0
Lastname C 10 0
Address C 25 0
City C 15 0
State C 2 0
Zip C 5 0
Phone C 13 0
fax C 13 0

FUNCTION Start()
LOCAL aStruct AS ARRAY
LOCAL oServer AS dbserver
LOCAL i AS DWORD

oServer := dbsever{“ customer.dbf”}
aStruct := oServer:DbStruct
FOR i := 1 TO Len(aStruct)

AEval(aStruct[i],{|x|QQOut(AsString(x)+ ;
Replicate(“ “, 10-Len(AllTrim(AsString(x)))))})
QOut(CRLF)

NEXT

WAIT

The first script

As before hinted, Jasmine speaks its own language: ODQL. The
abbreviation stands for Object Data Query Language, a query
language for objects. The language syntax uses uses a mixture of
SQL and C++.

One of the first important characteristics is case sensitivity.
Pure VO developers need to accustom themselves to it from the
beginning, before disrespecting the case creates nasty problems.

The requirement of ending each command with a semico-
lon (;) comes from C. This also true of blocking statements with
curly braces, in order connect them. As with C, type definitions
always appear before variable names. Roughly simplified the fol-
lowing syntax pattern emerges:

Now, in order to build that script, we need some ODQL instruc-
tions. First of all, Jasmine needs to be told to which ClassFamily
the new class belongs. Our example has already done that, and
we can now use this ClassFamily. ODQL also has the defaultCF
command for this purpose, which could well be one of the most
frequently used instructions.

In order to create the class, we use the instruction defineClass,
followed by the class name. The ClassFamily can be explicitly
declared by the syntax <ClassFamilyName>::<ClassName>,
thereby avoiding the defaultClass command. Note that the pro-
per sign is two colons. However, if this is done, then it must be
carried through throughout the entire script.

The instruction defineClass wants three parameters altogether.
The first, when inheritance is desired, indicates the name of the
superclass. The second parameter optionally provides the class
with a description. The third parameter consists of a block of
instructions, which determine the necessary properties of the
class with their respective properties. Two more keywords deter-
mine whether the characteristics are valid at class or object level.

Jasmine distinguishes between properties applying to all
objects of a class and those applicable to only to each instance
of the class. For our example, only characteristics applying to
instance levels make sense, and that gives the following script:

The final command buildClass tells Jasmine to create the new
class. This process creates the pre-processor code, and passes
them to the C-compiler. There is the reason for the aforemen-
tioned compiler requirement, which must be installed on the
same machine as the Jasmine database.

Now we only need store our script to an .ODQ file and exe-
cute it. Therefore we use the command line interpreter COD-
QLIE with its parameter –exeFile (caution: case sensitivity!).

C:>codqlie –execFile customer.odq

The successful storing and building of the class is con-
firmed by the following interpreter responses:
E:\ODQ-Files>codqlie -execFile customer.odq
Client ODQL Interpreter
Jasmine Version 2.0
Portions of this product Copyright 1996-1999

Computer Associates International, Inc.
Portions of this product Copyright 1996-1999

FUJITSU LIMITED
Portions of this product Copyright 1996-1999

Computer Associates International,
Inc. & FUJITSU LIMITED

Connecting to host ZECMI02.
(Information) E_OD6297_ODB_ECE_OKDEFCLASS Class (
‘SDTSamplesCF’::’CUSTOMER’)
has been successfully defined.
(Information) E_OD6294_ODB_ECE_OKBLDCLS Class (
‘SDTSamplesCF’::’CUSTOMER’)
has been constructed successfully.

E:\ODQ-Files>

“Faith is good, control is better!” For this reason, we can also
check the results via Jasmine Studio:

36 Software Development Techniques 01/2000

ODQL Syntax:

1. command;

/* Comment */
2. command
{
more commands
more commands
...;
};
3. command;
...
..

defaultCF SDTSamplesCF;

/* Define a new class */
defineClass CUSTOMER

description: “”

{
instance:

systemCF::Integer CUSTNUM;
systemCF::String[10] FIRSTNAME ;
systemCF::String[10] LASTNAME ;

systemCF::String[25] ADDRESS ;
systemCF::String[15] CITY ;
systemCF::String[2] STATE ;
systemCF::String[5] ZIP ;
systemCF::String[13] PHONE ;
systemCF::String[13] FAX ;

};
buildClass CUSTOMER;

Relationships
Real life doesn’t consist of individual tables. The name relatio-
nal database points to the reality that more of the story is told
through the relationships between the tables. Only the proper
usage of these relationships avoids redundancy. In most cases,
the relationships connect only a few tables. However, if the data
structure represents more complex business procedures, relatio-
nal structures can break down quickly and then now amount of
programming will rein in these databases. In such situations a
representation of the data in a class hierarchy has clear advanta-
ges.

So, how does the typical 1:N relationship look in a class hier-
archy? Let’s take our class CUSTOMER, which we just built,
and relate it to another table: orders. The example directory
GSTutor of CA-Visual Objects again provides us with an appro-
priate example table, orders.dbf. We first have to build it as a class
in Jasmine, just as we did with the customer table. The folloing
script does that. With our previous experience, it should not
need further explanation:

In order to relate these two tables, we need at least one identical
column per table.

In the object-oriented approach we simply extend CUSTO-
MER, which serves as the master, with one more property. This
property can now be an object of the class ORDERS or through
a method, supply us an ORDERS collection.

In the first case, we have two options. If the property con-
tains an individual object at run-time, then we have a 1:1 relation.
If we want to access several orders, we need a 1:n relation. In
this case the property should contain a collection. The typical
collection type for this is a Bag. To make this possible, we have
to add the appropriate instruction to the script customer.odq.

Bag<SDTSamplesCF::ORDERS> Orders ;

Important: As with many RDBMS, Jasmine also does
not permit dynamic changes to a class hirarchy, for secu-
rity reasons. That means, when changes are made, the
existing structure has to be changed and then be built
again with the following script:

What really happened becomes evident, when the CUSTOMER
class is checked via the Jasmine Class Property Inspector:

The newly added property Orders, with all its associated proper-
ties, is linked directly with the class CUSTOMER. If I would like
to access the orders in my VO application later, I can do this
directly via CUSTOMER, as one can see in the next code frag-
ment:

The two last lines deliver a collection of ORDER objects
for processing. Even if this representation is heavily sim-
plified, it nevertheless shows, how consistently object-ori-
ented data is handled by an OO-language such as CA-
Visual Objects. One good, clear, example of how to
access Jasmine data is the Jasmine Simple sample from
CA- Visual Objects.

37Software Development Techniques 01/2000

defaultCF SDTSamplesCF;

/* Define a new class */
defineClass ORDERS

description: “class for customer orders”

{

instance:
systemCF::Integer CUSTNUM ;
systemCF::Integer[5] ORDERNUM ;
systemCF::Date[8] ORDER_DATE ;
systemCF::Date[8] SHIP_DATE ;
systemCF::String[25] SHIP_ADDRS ;
systemCF::String[15] SHIP_CITY ;
systemCF::String[2] SHIP_STATE ;
systemCF::String[5] SHIP_ZIP ;
systemCF::Decimal[10,2] ORDERPRICE ;
systemCF::String[5] SELLER_ID ;

};
buildClass ORDERS;

defaultCF SDTSamplesCF;
/* Define a new class */
defineClass SDTSamplesCF::CUSTOMER
description: “”
{

instance:
systemCF::Integer CUSTNUM ;
systemCF::String[10] FIRSTNAME ;
systemCF::String[10] LASTNAME ;
systemCF::String[25] ADDRESS ;
systemCF::String[15] CITY ;
systemCF::String[2] STATE ;
systemCF::String[5] ZIP ;
systemCF::String[13] PHONE ;
systemCF::String[13] FAX ;
Bag<SDTSamplesCF::ORDERS> Orders ;

};
buildClass CUSTOMER;

LOCAL oCustomer AS JObject
LOCAL oOrders AS Jcollection

…
oCustomer := JObject{….}
oOrders := oCustomer:Orders

Parents have children

One of the fundamental reasons for a relational database is avo-
iding data redundancies, because the information necessary is
distributed between different tables. Thus for example the
address information is put down in a separate table, which can
be connected if necessary with both the customers and suppliers
tables by a key field. In plain language, that means that the spe-
cific person only gets the necessary data associated with the
customer, when accessing the customer table, or the supplier
associated information from the supplier table. Data, which
involves both tables, is stored in a separate table. The disadvan-
tage of this form of data design is that as the data structures
increase, the necessary number of the relationally connected
tables rises so quickly that the clarity can be lost.

The inheritance methods of the object-oriented approach
offers in comparison clear advantages.
Thus, with inheritance, a base object or a superclass,
which contains all common information, must first be
created. Under this superclass almost as many sub-class-
es can be created as desired, all of which have access to
the information of the superclass.

If one transfers this to the example described above, we
would have different groups of persons in a fictitious enterprise:
customer, supplier, and coworker. These were then summarized
in a superclass people. This superclass then contains characteri-
stics, which are common to all inherited classes.

To test this inheritance in the context of a practical example,
we start from the following inheritance tree:

This means that now the class people will contain the
information, which the sub-classes also need; thus Name,
Address, und Contact Data. Specialized data regarding
orders, articles, or accounts, are then stored in the sub-
classes.

It would be sensible to consider order in which classes are
generated, before creating the necessary scripts. The reason for
this is that if a class depends on a second class, the second class
needs to exist in the database, before the first class can be crea-
ted, otherwise class generation fails. Since Orders already exists
and does not require any changes, we can create the first script
for the Aticle and Bank classes in the defaultCF SDTSamplesCF:

This new script uses a new keyword: mandatory, which means that
when instances of the class are saved, the value must be set as
well.

We come now to the Script, which creates the class Person, as
well as its sub-classes.

This class corresponds essentially to the Customer class
from our first example.

38 Software Development Techniques 01/2000

description: “Superclass for articles”

{

instance:
systemCF::String[20] ARTNR mandatory:;
systemCF::String[80] ARTNAME mandtory:;
systemCF::String ARTDESCR ;
mediaCF::CABitmap PICTURE ;

};
buildClass ARTICLES;

defaultCF SDTSamplesCF;

/* Define a new class */
defineClass SDTSamplesCF::Bank
description: “superclass for bank related information”
{

instance:
systemCF::String[20] blz mandatory:;
systemCF::String[80] name mandatory:;
systemCF::String[30] account mandatory:;

};
buildClass Bank;

defaultCF SDTSamplesCF;

/* Define a new class */
defineClass SDTSamplesCF::Person
description: “Superclass for all business persons”
{

instance:
systemCF::String[40] FIRSTNAME ;
systemCF::String[40] LASTNAME ;
systemCF::String[80] ADDRESS ;
systemCF::String[40] CITY ;
systemCF::String[40] STATE ;
systemCF::String[10] ZIP ;
systemCF::String[20] PHONE ;
systemCF::String[20] FAX ;

};
buildClass Person;

defaultCF SDTSamplesCF;

/* Define a new class */
defineClass SDTSamplesCF::CUSTOMER
description: “class inherit person”
super: SDTSamplesCF::Person

{

instance:
systemCF::Integer CUSTNUM ;
SDTSamplesCF::Bank BANK ;
Bag<SDTSamplesCF::ORDERS> ORDERS ;

};
buildClass CUSTOMER;

Customer
Supplier
Employee

Person

Orders
BankInfo
Articles

SDTSamplesCF

defaultCF SDTSamplesCF;
/* Define a new class */

defineClass SDTSamplesCF::ARTICLES

Now we have another new keyword: super, which defines
the parent class. It is still worth mentioning that the
properties for the relations to ORDERS and ARTICLES
are of the data type Bag, and later contain of Collections
of the appropriate objects.

Before you implement the scripts with CODQLIE, you
should check if the class Customer, which we created in our first
example, still exists, and delete it, if necessary. If this is not
done, Jasmine generates an error message and all remaining
instructions are cancelled. There is no reason to fear that the
server, or the database, could be damaged.

Result

I hope you now have an impression of the possibilities offered
by Jasmine for converting existing relational data structures to
object-oriented methodology. Whereby I would like to stress
especially that it is not the goal of Jasmine to replace all relatio-
nal databases. Rather Jasmine databases should normally com-
plement, and merge the existing volume of data. This becomes
particulary clear with the concept pursued by Jasmine ii. The so-
called Intelligent Infrastructure (indicated by “ii”), offers the integra-
tion of almost all data sources, whether they now come from
Mainframe, Unix, or PC systems.

Since this article was meant as a beginning I will continue this
topic loosely in the following issues. Among other things I will
tell you how you can merge “Serverside Methods” into your data
structure in order to unburden client applications and your net-
work. If you would like to test the construction of classes in the
meantime, become familiar with the appropriate ODQL instruc-
tions. In Jasmine’s online documentation, which can counted
among the few successful reference texts, you will find these

instructions described in detail. As aids to generating scripts, you
can use the Jasmine Script Utility, which is described in the arti-
cle of the same name in this issue. This tool permits you to
interactively create ODQL scripts based on template files.

Michael Zech
Email: mz@michaelzech.de

39Software Development Techniques 01/2000

defaultCF SDTSamplesCF;

/* Define a new class */
defineClass SDTSamplesCF::SUPPLIER
description: “class inherit from person”
super: SDTSamplesCF::Person

{

instance:
systemCF::Integer SUPPNUM ;
SDTSamplesCF::Bank BANK ;
Bag<SDTSamplesCF::ARTICLES> ARTICLES

mandatory:;

};
buildClass SUPPLIER;

defaultCF SDTSamplesCF;
/* Define a new class */
defineClass SDTSamplesCF::EMPLOYEE
description: “class inherit from person”
super: SDTSamplesCF::Person
{

instance:
systemCF::Integer PERSNUM mandatory:;
SDTSamplesCF::Bank BANK ;
systemCF::Decimal[8,2] SALARY ;

};
buildClass EMPLOYEE;

40 Software Development Techniques 01/2000

Jasmine Script Utility

Michael Zech
The Jasmine Script Utility is intended to
support developers during the conver-
sion of existing data structures to an
object-oriented class design. This short
description should show this tool and its
possibilities to you. For context, you
may want to refer to the article “From
Relational To Object-Oriented Data
Structures” in this issue.

Generating the Jasmine class structures requires running ODQL
instructions on the server. Normally, the instructions are stored
in script files, and then implemented on the server via the com-
mand line interpretor: CODQLIE. Creating these scripts can be
a rather troublesome task, especially for illustrating the structure
of existing databases in Jasmine’s class hierarchy. One usually
uses so-called CASE tools for such tasks, which are normally not
included with object-oriented database, including Jasmine 1.21.
While the Jasmine Script Utility does not claim to be such a
CASE tool, it can none-the-less be helpful when converting
dBase files, particularly since it is free. A future version is plan-
ned to support SQL tables, as well as xBase. Here now a short
introduction to the functionality of this tool.

JSU start

When you have started the program, next to the help icon you
find four toolbar icons at your disposal:

starts the DBStructure Explorer.
runs the Template Editor with a new template.
opens the Template Editor with an

existing Template.
starts the ODQL Editor.

The DBStructure Explorer

Task of the DBStructure Explorers is it to read the structure of
an existing file, to produce a template from that, and to store it.
The intermediate step is a requirement, since there are very few
cases, where the conversion is direct. Adjustments to the data
type and field characteristics will be required much more often.

With the Toolbar Icons , you can add and delete files
from the Explorer. Selecting a file from the tree, and clicking on

the icon, will create a template. All commands are also avai-
lable from the context menu as well.

Template editor

The Template Editor is the real heart of the application. It can
edit the generated templates, in order to create the necessary
adjustments for the production of the ODQL script. Since
most options are self-describing, I will talk about some few
points here.

In order to be able to avoid spelling errors, with particu-
lar to capitalization, the Template editor can open a con-
nection to a Jasmine Server and read the existing classes

and properties from it. The icon builds this connec-

tion. Either clicking the icon or closing the Template
Editor will close the connection.

The icons allow you to add new characteristics or dele-
te them.
When the structure is ready, and all necessary fields are entered,

the icon generates the ODQL script. Success is indicated by
a checkmark in the right part of the window, and the script can

then be stored via the icon.
Even though this utility prevents some errors from occur-

ring, the user remains responsible for the correctness of the
scripts. ODQL instructions are so powerful that it is nearly
impossible to prevent all error combinations. Jasmine gives
some consolation, in that it only accepts perfect scripts, and the-
reby guarantees the data consistency.

In Closing

On the enclosed CD, you will find both the executable applica-
tion, with an install routine, and the complete source code of
application. Please consider that programming style was not the
focus this time around, rather, as in real life, the result. The
source code gives you the ability to make modifications yourself.
I am always interested in improvement suggestions.

Michael Zech
Email: mz@michaelzech.de

Traps, Tips n Tricks

Today we’ll again try to answer some
typical hotline questions.

Question:
I use DBFCDX as the default RDD. My tables have memo fields
to store texts. Each time I call the DataWindow:Cancel() method
existing texts in the memo field of the current record are lost.
How can I work around this problem?

Response:
this problem is actually caused by a bug in the DBServer:Refresh()
method. When called for the DBFCDX.RDD it can lead to loss
of data in the memo fields. Although these memo fields contain
regular text, they are interpreted as Blob. The problem can be
easily worked around as shown below:

Question:
I use an extremely large amount of object instances in my appli-
cation and at a certain point in time I receive the error message
‘limit exceeded, Function RegisterAxit....’ How large is the maxi-
mum number of registered Axit() methods and how can I chan-
ge this number?

Response:
the maximum number of registered Axit() is set to 16000. This
is the standard. Starting with the version 2.5 it can be adjusted
in the following key in the Registry:

HKEY_CURRENT_USER
Software

ComputerAssociates
CA-Visual Objects Applications

The numeric value named MaxRegisteredAxitMethods, if pre-
sent, will determine the number of registered Axit() methods. To
double the number of registered Axit() add this value to the
above key and set it to 32000. To verify run the following test.
Then change the value and run the same test again:

Question :
I noticed that there are obviously two versions of the CDX dri-
ver, _DBFCDX.RDD and DBFCDX.RDD. What is the diffe-
rence between both RDDs and what is the reason behind this
concept?

Response:
the reason for this particular design is to achieve a high degree
of flexibility. It uses the advantages of the RDD concept. The
DBF file format differentiates three different file types:

Database files (DBF files)
Index files
Memo files

For each of these file formats there is a specific driver:

DBF, DBT: cavodbf.rdd
CDX: _dbfcdx.rdd
NTX: dbfntx.rdd
FPT: dbfcdx.rdd
DBV: dbfmemo.rdd

Specifying the RDD (by name) determines the file formats to be
used:

DBFNTX: DBF, NTX, DBT
DBFMDX: DBF, MDX, DBT
DBFCDX: DBF, CDX, FPT

However at least 2 RDDs are actually always loaded. These can
be varied. In addition the necessary RDD can be passed as an
array instead of a name string. The following calls for the crea-
tion of a DBF file are absolutely equivalent:

41Software Development Techniques 01/2000

CLASS DBSFix INHERIT DBServer

METHOD Init (oFile,lShareMode,;
lReadOnlyMode,xDriver,;
aRdd) CLASS DBSFix

LOCAL n AS DWORD
LOCAL x AS USUAL

SUPER:Init(oFile,;
lShareMode,;
lReadOnlyMode,;
xDriver,;
aRdd)

FOR n := 1 TO SELF:wFieldCount
IF aOriginalBuffer[2, n]

x := SELF:FIELDGET(n)
IF !IsNil(x)

SELF:aOriginalBuffer[1,n] := x
ENDIF
SELF:aOriginalBuffer[2, n] := .F.

ENDIF
NEXT

RETURN SELF

FUNC Start
LOCAL n AS INT
LOCAL a AS ARRAY
LOCAL oTemp AS CTest

a := {}

DO WHILE .T.
n++
IF (n % 1000) = 0

? n
ENDIF
oTemp := CTest{}
AAdd(a, oTemp)

ENDDO

CLASS CTest

METHOD Init () CLASS CTest
RegisterAxit(SELF)

METHOD Axit CLASS CTest
UnRegisterAxit(SELF)

DBCREATE(“ntxdbt”, a, “DBFNTX”)
DBCREATE(“ntxdbt”, a, ;

{“CAVODBF”, “DBFNTX”})
Altogether the following combinations of file formats are possible:

How can I determine the installed version of a LOE
Automation Server

The following key in the registry holds the version of the auto-
mation interface:

HKEY_LOCAL_MACHINE\Software\
Classes\Excel.Application\CurVer

The value found there is the version of the interface. For
Excel97.Application for example 8 is returned. For other office
applications the following keys can be used:

The method LV_Data reads the keys and return an array:

42 Software Development Techniques 01/2000

DEFINE REG_LMSC :=
"HKEY_Local_Machine\Software\Classes\"
DEFINE REG_APPVER := ".Application\CurVer"
DEFINE Reg_Excel := (REG_LMSC + "Excel"+REG_APPVER)
DEFINE Reg_Word := (REG_LMSC+ "WORD"+REG_APPVER)
DEFINE Reg_InternetExplorer := ;
(REG_LMSC+"InternetExplorer"+ REG_APPVER)

DEFINE Reg_Powerpoint := (REG_LMSC+;
"Powerpoint"+REG_APPVER)

DEFINE Reg_Outlook := (REG_LMSC+"Outlook"+REG_APPVER)

METHOD LV_Data() CLASS dlg_OfficeInfo
LOCAL oRKey AS DcRegKey
LOCAL cWert AS STRING
LOCAL i AS DWORD
LOCAL aTempdata AS ARRAY

aTempdata := {{"Excel", Reg_Excel},;
{"Word", Reg_Word},;
{"PowerPoint", Reg_Powerpoint},;
{"Outlook", Reg_Outlook},;
{"Internet Explorer",; Reg_InternetExplorer}}

FOR i := 1 UPTO ALen(aTempdata)
oRKey := dcRegKey{aTempdata[i,2]}
oRKey:open()
cWert := oRKey:defaultvalue
oRKey:close()
IF Empty(cWert)
cWert := "n.v." // "n/a"

ELSE
cWert := ;

Right(AllTrim(cWert),1)
ENDIF
aTempdata[i,2] := cWert

NEXT
SELF:aData := aTempdata

FUNC Start
FIELD nfield, mfield
LOCAL a AS ARRAY
LOCAL i AS INT

a := { {“nfield”,”N”, 10, 0},{“mfield”,”M”, 10, 0} }
SetAnsi(.F.)

// DBF, NTX, DBT
DBCREATE(“ntxdbt”, a, {“CAVODBF”, “DBFNTX”})

// DBF, NTX, DBV
DBCREATE(“ntxflex”, a, {“CAVODBF”,”DBFMDX”,”DBFME-

MO”})

// DBF, MDX, DBT
DBCREATE(“mdxdbt”, a, {“CAVODBF”, “DBFMDX”})

// DBF, MDX, DBV
DBCREATE(“mdxflex”, a, ;

{“CAVODBF”, “DBFMDX”, “DBFMEMO”})

// DBF, CDX, FPT
DBCREATE(“cdxfox”, a, ;

{“CAVODBF”, “_DBFCDX”,“DBFCDX”})

// DBF, CDX, DBV
SET(_SET_MEMOEXT, “.DBV”)
SET(_SET_MEMOBLOCKSIZE, 1)
DBCREATE(“cdxflex”, a,;

{“CAVODBF”, “_DBFCDX”, “DBFCDX”})

RETURN

Adding Email to your Application

Erik Wynn

This session describes how to add auto-
matic email capabilities to your applica-
tion. SMTP will be presented, and we
will discuss how to build an ActiveX ser-
ver which communicates with SMTP ser-
vers. We will examine email message
structures, multi-part messages, MIME
types, base64 encoding, file attach-
ments, and content types. A sound
knowledge of CA-Visual Objects pro-
gramming is useful for this session.

Email
mail1: m?l n. Middle English male from Old French from Old
High German malhe.

2 a: something sent or carried in the postal system b : a con-
veyance that transports mail c : messages sent electronically to
an individual (as through a computer system).

There is nothing new or mysterious about mail. Mail is a
form of communication that has evolved over the past 8,000
years. The basic principle of communication is quite simple:

• a thought or idea originates inside a person’s head
• the idea is encoded into a symbolic system and transcri-

bed onto a suitable medium for transmission
• the idea is transmitted from the sender and is received by

the receiver
• the encoded information is converted from the symbolic

representation into its interpreted meaning

In fact, since prehistoric times, people have found increasingly
more effective means of communicating over larger and larger
distances. Signal fires on mountaintops announced awaited
events. In Africa a sophisticated system of drum beating was
used, where the tone and the rhythm determined the meaning.

Sometime around 8,000 years ago communication took a
major turn for the better when ancient civilizations began
making use of material to record written messages. These mes-
sages had the distinct advantage of being able to persist through
time and space in a way that earlier forms of communication
could not.

The rest, as they say, is history. Early courier systems for
government and military use were organized in the Persian
Empire under Cyrus, as well as in the Roman Empire and in
medieval Europe. The arrival of the information age and the
proliferation of personal computers made it possible to extend
the simple concept of mail to its electronic form – email.

Email works on the same principle as that of prehistoric
communication: an idea is encoded into a symbolic system,
transcribed onto a suitable medium, transmitted over a wire, and
received and decoded by the recipient. The rest of this paper
deals with the minor details of how this actually takes place.

Why Automate?
Okay, so we might be able to add email to an application. But
why? What advantage could this serve? Here are just a few
examples to whet the appetite:

• Error handling and notification: when an error occurs in
an application, the details of the error could be automati-
cally sent to a system administrator or application devel-
oper

• Web site customer support: a customer could request
information about a specific product or service, and
automatically receive information in their inbox

• Automatic reminders: when was the last time you forgot
someone’s birthday, anniversary, or other important occa-
sion?

• Asynchronous communication between two processes:
any two processes can use email as an asynchronous
means of remote inter-process communication.

Internet Protocol

There are many different kinds of email, ranging from small,
proprietary systems to large corporate messaging solutions. By
far, the most popular form of email is that involving the sending
and receiving of electronic mail messages over the Internet.
This paper deals with Internet-based email.

In order for two nodes on a network to communicate with
one another, they must first decide on the language which they
are going to use. This is called a protocol. There are a number
of common protocols, covering a range of different networks
and communication needs. Different protocols determine the
way this communication takes place on the network.

In the Internet environment, the protocol is Transmission
Control Program (TCP), which works on top of Internet
Protocol (IP). This is referred to as TCP/IP. It should be noted
that other protocols can also run on top of IP, such as User
Datagram Protocol (UDP), which is how DCOM works under
Windows 95/98 and NT.

Services

Services are programs running using a certain protocol, which
have non-proprietary standards. Common services determine
how browsers view web sites (HTTP), how information is read
from a newsgroup (NNTP), how files are uploaded and down-
loaded to an FTP site (FTP) how streaming multimedia content
is delivered to a client (RSTP), and even how email messages are
sent and received (SMTP and POP3).

Each of these protocols acts as a layer on top of a network
protocol. For Internet-related services, the protocol is usually
TCP/IP, however other protocols can be used.

Generally, each Internet service has been developed as a glo-
bal effort, with one or more RFC (Request For Comment) publi-
cations proposing a standard for service implementation. The
global nature of these proposed standards removes individual
ownership issues, and helps to ensure longevity and consistency
of implementation.

Winsock

Winsock, which stands for Windows Sockets, is a Microsoft
Windows implementation of an IP stack, which enables win-

43Software Development Techniques 01/2000

dows clients to use any of the services across TCP/IP. The
WSOCK32.DLL file contains the API functions available to
clients using Winsock services. There are four groups of func-
tions in the Winsock API:

• Conversion functions
• Database functions
• Socket functions
• Microsoft extensions

The Postman Delivers with SMTP
In order to add email automation to a program, one must first
understand how email works. There are, in fact, a number of
different ways to send email from within an application. MAPI
(Mail API) is a client-side API which allows for the sending and
receiving of messages. Using MAPI requires the MAPI.DLL
and supporting DLLs to be installed on the client machine. For
server machines, this may not be the case. A more specific solu-
tion, but one which is more readily available, is SMTP.

SMTP stands for Simple Mail Transport Protocol, and is the
basis for sending email messages across the Internet. SMTP is a
standard protocol for the exchange of electronic mail messages.
It is based on RFC 821, published in August 1982, and has
undergone only a few minor enhancements over the years.

SMTP can run across any streaming network protocol, inclu-
ding NITS, NCP, X.25, and TCP. TCP is by far the most com-
mon supported implementation today.

An SMTP Session

An SMTP session involves an SMTP transmitter and an SMTP
receiver, both speaking SMTP. The sender initiates a conversa-
tion with the receiver, and an information exchange takes place.
The SMTP commands define what can be said, how it can be
said, and what the valid responses are. RFC 821 defines each of
the SMTP commands in detail.

Sender

The sender is the originator of the message. The entire conver-
sation between sender and receiver is decidedly one-sided: the
sender issues a command and the receiver responds with a result
code. The sender is initially some application program at the
starting point of the message, such as Microsoft Outlook,
Eudora, or some other email program. As the email message is
transmitted through the Internet, a series of relays from one
SMTP server to another takes place, in which case the receiver
in one case becomes the sender is the next.

Reciever

The receiver is an SMTP server which receives the message from
the sender. It is up to the receiver to implement a minimal set
of SMTP commands. The sender can determine which com-
mands the receiver supports before the conversation begins.

At any point during the conversation, the receiver and sender
can trade places. This would be done between two SMTP ser-
vers relaying messages between different network regions, where
the first server would pass on its message to the second, after
which time the second server would pass on its messages to the
first.

Minimal SMTP Commands

The following is a brief description of the basic SMTP com-
mands that an SMTP server must support. A comprehensive
description can be found in RFC 821 [1].

HELO
HELO or EHLO (see below) must be the first command sent
from the transmitter to the receiver. This initiates a new SMTP
session. During a session, zero or more email transactions can
be conducted.

MAIL
Identify the mail sender. This does not need to be a valid email
address! Many spammers have used this to their advantage.
Many SMTP servers now require either the sender to have a local
email account, or the direct recipient to have a local email
account to prevent abuse of SMTP servers.

RCPT
Specify the mail recipient. This must be a local mailbox on the
receiver SMTP server, or a mailbox on a remote SMTP server.
If the SMTP server allows for the relaying of email messages,
the SMTP receiver will attempt to relay the mail message to the
destination SMTP server.

DATA
Provide the contents of the mail message. The mail data ends
with a <CRLF>.<CRLF> sequence. It is inside the DATA sec-
tion that the actual message header and body are defined. This
is discussed later in this paper. See RFC 822 [2] for a detailed
description of message format.

RSET (ReSET)
Abort the current email transaction. Other transactions can be
conducted during this session.

NOOP
Do nothing, wait for OK response from receiver.

QUIT
Terminate SMTP session with receiver. Any pending email mes-
sages will be sent at this time.

Optional SMTP Commands

VRFY (VeRiFY)
Verify that a given email address exists on an SMTP server.

EXPN (EXPaNd)
Expand a mailing list. SMTP Servers maintain local user email
account information, which can consist of mailing lists. The
EXPN command will list all members of the mailing list speci-
fied.

SEND
Request that a mail message be sent directly to a user’s terminal.
The mail transaction is successful if the message is delivered the
terminal.

44 Software Development Techniques 01/2000

SOML (Send Or MaiL)
Request that a mail message be sent directly to a user’s terminal
if the user is online, or to their mailbox if the user is not online.
The mail transaction is successful if the message is delivered eit-
her to the terminal or the mailbox.

SAML (Send And MaiL)
Request that a mail message be sent directly to a user’s terminal
if the user is online, and, in all cases, to the user’s mailbox. The
mail transaction is successful if the message is delivered the mail-
box.

TURN
A TURN command requests that the sender and receiver trade
places: the sender becomes the receiver, and the receiver beco-
mes the sender. This is useful for intermediate message relay
stations for messages between different network regions.

A Sample Conversation with an SMTP Server

The following is a typical conversation between a client applica-
tion, such as TELNET, and an SMTP server. In this session, the
client sends a simple email message. Text entered by the client
is presented in bold.

The <CRLF> character sequence, Chr(13) + Chr(10), is
represented by the É character.

220 alpha.midtier.com NTMail
(v4.20.0009/NT2040.00.2c8043b9) ready for ESMTP
transfer

HELO www.midtier.com��

250 alpha.midtier.com www.midtier.com

MAIL FROM:<someone@somewhere.com>��

250 OK.

RCPT TO:<erik@midtier.com>��

250 OK.

DATA��
354 Start mail input; end with <CRLF>.<CRLF>.

To: Erik��
From: Someone��
Subject: Hi��
��

Hi There, ��
��

This is a quick message. ��
��

Bye��
��

.��

250 OK.

QUIT��

221 Goodbye www.midtier.com

Notice that the section following the DATA statement contains
additional information, including a “Subject:” line, a “To:” line,
a “From:” line, and a block of text which looks like a message
body. The contents and layout of the DATA section is the next
topic for discussion.

Message Format
Back in the early days of email, several informal standard mail
message formats co-existed. This was back when Arpanet was
the main network used (actually part of THE Internet) for the
sending and receiving of email. A standard for a common mes-
sage format was proposed in order to allow for a the exchange
of email on a more global level. This standard was first publis-
hed in RFC 733, and later in RFC 822. It describes the content
and structure of the body of an email message (the section
which appears after the SMTP “DATA” command).

The best way to describe the message format standard is to
provide a brief sample. In fact, one sample has already been
given, above. The following is a slightly more complex message.

Subject: Arpanet message format standard��
From: “Erik Wynn” <erik@midtier.com>��
To: “Someone OutThere” <someone@somewhere.com>��
CC: “SomeoneElse Outthere” <someoneelse@somew-

hereelse.com>��
Reply-To: “Erik Wynn” <erik@midtier.com>��
Date: Mon, 23 Aug 99 14:20 EST��
��

Hi There, ��
��

This is a message to someone out there. ��
��

Is there anybody out there? ��
��

.��

This message includes details for “cc” (carbon copy), and
“Reply-To” email address, name information associated with the
sender and receiver, and the date the message was sent. Notice
the common pattern for the way each of these attributes is des-
cribed.

Each email message consists of envelope information, such
as Subject, From, To, etc…, as well as the actual message itself.
A pair of CRLFs indicate the end of the envelope and the begin-
ning of the email message.

There are a number of standard fields which can be used wit-
hin the message envelope. The format is:

Field Name> “:” <Value>

The specific format of <Value> will be different depending
upon what field is being described. For example, a sender or
recipient specified in the “To”, “From”, “CC”, “BCC” or
“Reply-To” field has the format:

<Field Name> “:” “Name” <someone@somewhere.com>

Such as:
To: “Erik” <erik@midtier.com>

For multiple recipients, a separate entry for each recipient is
required.

RFC 822 contains detailed information on the syntax for
field descriptions.

A MIME is a Terrible Thing to Waste

MIME stands for Multipurpose Internet Mail Extensions, and is
a standard proposed in RFC 1521. It describes additional mes-
sage header and body format extensions to allow the transmis-
sion of multi-purpose email messages. Among other things,
MIME allows email attachments, different character sets, messa-

45Software Development Techniques 01/2000

ge encoding, and HTML formatted email messages.

Content-Type

The content-type determines what the body of the message con-
tains. Sample content-types are text/plain, image/jpeg,
audio/wav, and video/mpeg.
The content-type is specified in the message header as fol-
lows:

Content-Type: Text/plain

Character Set

The Character set is used to determine the way information in
the message is encoded into a series of octets. Different lang-
uages typically use different character sets, so it is important to
specify which character set was used to encode the message for
it to be properly decoded. The character set is specified as a
parameter of the content type, as follows:

Content-Type: Text/plain; charset=us-ascii

Or:

Content-Type: Text/plain; charset=iso-8859-6

Content-Transfer-Encoding

This field specifies how the message body will be encoded.
Simple text messages can be sent without any kind of encoding,
however other types of messages require encoding to convert
their contents into a format which is suitable for transmission.
Standard Content-Transfer-Encoding values are:

7bit
quoted-printable
base64
8bit
binary

And the content-transfer-encoding is specified as in:

Content-Transfer-Encoding: quoted-printable
A simple MIME message body is as follows:

From: Erik <erik@midtier.com>��
To: Someone <someone@somewhere.com>��
Subject: Test HTML Message��
MIME-Version: 1.0��
Content-Type: text/plain; charset=us-ascii��
Content-Transfer-Encoding: 7bit��
��

Hi, ��
��

This is a regular email message.��
Bye.��

Simple Encoding

7Bit, 8Bit, and Binary encoding types all indicate that no enco-
ding has been performed on the message body. However, there
is a difference in the original contents between these types. 7bit
encoding means that the data is all represented as short lines of
US-ASCII data.. 8bit is the same as 7bit, however some of the
characters may have the high-order bit set – creating some non-

ASCII characters. Binary encoding means that high-order bits
may be set, and that line lengths may not be short enough for
SMTP transport (limited by some SMTP servers to be a maxi-
mum length of 76 characters).

Quoted-Printable Encoding

This is generally used to represent data with human-readable
contents. Quoted-printable encoding converts the data so that it
will not be modified by mail transport. The rules for imple-
menting quoted-printable encoding are provided in RFC 1521 in
detail.

Base64 Encoding

Base64 encoding is an popular method of encoding data that is
not necessarily human-readable. This includes binary files, such
as images, sounds, DLLs, etc…, or any file in proprietary format
which is not necessarily human readable. The reason for enco-
ding such data is so that the data can be represented without the
use of high-order ASCII bits or syntactically significant control
characters, such as CRLF, etc… which may prevent the mail
from being transmitted properly. The basic process is as follows:

Data is broken up into 24 bit chunks (three 8-bit characters).
These three characters are converted to binary, concatenated,
and reinterpreted as four 6-bit chunks. A 6-bit chunk can hold
numbers between 000000 and 111111 binary, or between 0 – 63
decimal. The mapped numbers are used as an index into a map
to determine the mapped character. The following table deter-
mines the mapping:

Table 1: Base64 Character Mapping

A detailed description of the base64 encoding algorithm is pro-
vided in RFC 1521.

Multi-part messages

MIME also enables messages to be sent with multiple sections.
In this case, each body part is placed within its own MIME sec-
tion, and the MIME header information described above direct-
ly precedes the body part to which it applies. This means that

46 Software Development Techniques 01/2000

0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 48 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8

10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w
15 P 32 g 49 x
16 Q 33 h 50 y

different body parts can have different content-types, character
sets, and encoding methods.

A typical application of this is to include message attach-
ments as separate MIME parts. Multi-part messages are speci-
fied using:

Content-Type: multipart/mixed; boundary=“—-MIME
BOUNDARY——-”

Where the “boundary” parameter is used to define a place mar-
ker or tag which will appear in the message body to separate dif-
ferent MIME sections.

Note that the phrase “This is a multi-part message in MIME
format” appears in the message body before the first MIME sec-
tion.

From: Erik <erik@midtier.com>��
To: Someone <someone@somewhere.com>��
Subject: Test HTML Message��
MIME-Version: 1.0��
Content-Type: multipart/mixed��

boundary=“—-MIME BOUNDARY——-”��
��

This is a multi-part message in MIME format.
—-MIME BOUNDARY——-

Content-Type: text/plain; charset=us-ascii��
Content-Transfer-Encoding: 7bit��
��

Hi, ��
��

This is a regular email message.��
Bye.��
—-MIME BOUNDARY——-��

Message Attachments

Message attachments can be created by simply specifying addi-
tional MIME sections. The following MIME message shows
how a message attachment can be defined:

From: Erik <erik@midtier.com>��
To: Someone <someone@somewhere.com>��
Subject: Test HTML Message��
MIME-Version: 1.0��
Content-Type: multipart/mixed��

boundary=“—-MIME BOUNDARY——-”��
��

This is a multi-part message in MIME format.
—-MIME BOUNDARY——-

Content-Type: text/plain; charset=us-ascii��
Content-Transfer-Encoding: 7bit��
��

Hi, ��
��

This is a regular email message.��
Bye.��
—-MIME BOUNDARY——-��
Content-Type: image/jpeg;��
name=“VOCA.JPG”

Content-Transfer-Encoding: base64��
Content-Disposition: attachment;��
filename=“VOCA.JPG”����

JJaFkL09mlJ65BbsPPuy09PtqjNa9+h/48vJhZLkem84FdpjUim
nNRzbv75
kL09mlJ65BbsPPuy09PtqjNa9+h/48vJhZLkem84FdpjUimnNRz
bv798jHs
65BbsPPuy09PtqjNa9+h/48vJhZLkem84FdpjUimnNRzbv798jH
========

��

—-MIME BOUNDARY——-��

Note: The base64 data in this sample is not intended to repre-
sent any actual image.

In this way, multiple attachments can be sent, each with their
own content-type.

HTML Formatted Messages

Messages with different formatting syntax, such as RTF or
HTML can also be sent using multipart messages. This is done
using the multipart/alternative content-type. The basic idea is to
create a message with multiple MIME sections, with each section
containing the same data, but in different formats. The client
agent (reader) will display the MIME section for the “highest”
content-types supported, and will ignore those that it does not
support. This allows each reader to render the message as well
as possible for the reader. Here is an example:

From: Erik <erik@midtier.com>��
To: Someone <someone@somewhere.com>��
Subject: Test HTML Message��
MIME-Version: 1.0��
Content-Type: multipart/alternative��

boundary=“—-MIME BOUNDARY——-”��
��

This is a multi-part message in MIME format.
—-MIME BOUNDARY——-

Content-Type: text/plain; charset=us-ascii��
Content-Transfer-Encoding: 7bit��
��

<Normal text message>
É
—-MIME BOUNDARY——-

Content-Type: text/html; charset=us-ascii��
Content-Transfer-Encoding: quoted-printable��
��

<Quoted-printable HTML message>
É

—-MIME BOUNDARY——-��

The encoded HTML message is not shown in this sample.
This technique will ensure that HTML-capable email readers
will render the HTML section of the message body, while
non-HTML-capable email readers will use the plain text sec-
tion.

Using Content-Type to Define Behavior

An interesting thing that can be done with email attachments is
to sent the Content-Type value to the normal windows MIME
type for that file type. This is useful since many email reader pro-
grams are able to use this MIME-type to determine which appli-
cation to launch in order to view the attachment. For example,
consider the following:

—-MIME BOUNDARY——-��
Content-Type: image/jpeg;��
name=“VOCA.JPG”

Content-Transfer-Encoding: base64��
Content-Disposition: attachment;��
filename=“VOCA.JPG”����

JJaFkL09mlJ65BbsPPuy09PtqjNa9+h/48vJhZLkem84FdpjUim
nNRzbv75
kL09mlJ65BbsPPuy09PtqjNa9+h/48vJhZLkem84FdpjUimnNRz
bv798jHs
65BbsPPuy09PtqjNa9+h/48vJhZLkem84FdpjUimnNRzbv798jH
========

��

—-MIME BOUNDARY——-��

47Software Development Techniques 01/2000

This tells the email reader that the MIME section contains an
attachment of content-type image/jpeg. The email reader can
then look this information up in the Windows Registry to deter-
mine which program should be launched to view this attach-
ment.

It is easy to determine the MIME content type of a file
attachment based on the file extension. The following VO pro-
gram takes a file extension as a parameter and returns the asso-
ciated MIME type.

A similar routine could figure out the registered application
for the given MIME type.

Creating an Email Program

Now that we know all about Winsock, SMTP, email headers, and
MIME message formats, we are equipped to be able to create
our own email program. In this section, we will examine the
steps required to automatically send email
There are three main issues an email program must deal
with. Winsock issues, the SMTP conversation, and the
MIME message format. We will examine each of these areas
in more detail.

Winsock

At the system level, space must be allocated for windows sok-
kets and a winsock workarea, and a winsock stack must be initi-
alized. A connection to the mail server must also be made. All
this must take place before any kind of conversation can occur.
Before we get to far into this, let me just say that VO 2.0 has
a bug with the STRUCT definition for the _WINsockaddr_in
structure. The correct structure definition is provided below:

The following function shows the initialization and connection
sequence, as well as the shut-down. This program uses blockin
winsock calls. Non-blocking calls require an event loop to check
return values.

48 Software Development Techniques 01/2000

FUNCTION GetMimeContentType(strFileExtension AS
STRING) AS STRING PASCAL

LOCAL liError := 0 AS LONG
LOCAL strMIMEType := “” AS STRING
LOCAL pszValue := NULL_PSZ AS PSZ
LOCAL dwKeyHandle := 0 AS DWORD
LOCAL dwValueType := 0 AS DWORD
LOCAL dwValueLen := 0 AS DWORD

liError := RegOpenKeyEx(HKEY_LOCAL_MACHINE,;
String2Psz(“SOFTWARE\Classes\” + strFileExtension),;

0, ; // ulOPtions AS DWORD
KEY_QUERY_VALUE,; // samDesired AS DWORD
@dwKeyHandle ; // phkResult AS PTR
)//AS LONG PASCAL:ADVAPI32.RegOpenKeyExA#149

IF (liError == ERROR_SUCCESS)
pszValue := StringAlloc(Space(2048))
dwValueLen := PszLen(pszValue)
liError := RegQueryValueEx(dwKeyHandle,;
String2Psz(“Content Type”), ;

0,; // lpReserved AS DWORD PTR
@dwValueType,; // lpType AS DWORD PTR
pszValue, ; // lpData AS BYTE PTR
@dwValueLen ; // lpcbData AS DWORD PTR

9 // AS LONG PASCAL:ADVAPI32.RegQueryValueExA#157

RegCloseKey(dwKeyHandle)
IF (dwValueType == REG_SZ)

strMIMEType := Psz2String(pszValue)
ENDIF
MemFree(pszValue)

ENDIF
RETURN strMIMEType

STRUCT _WINsockaddr_in
MEMBER sin_family AS SHORT
MEMBER sin_port AS WORD
MEMBER sin_addr AS DWORD
MEMBER DIM sin_zero[8] AS BYTE

FUNCTION SendMailMessage(strDomain AS STRING, ;
strFrom AS STRING, ;
strTo AS STRING, ;
strSubject AS STRING,
strMessage AS STRING) ;
AS LOGIC PASCAL

LOCAL pWSAData AS _winWSADATA
LOCAL pHostPtr AS _winHOSTENT
LOCAL pServPtr AS _winservent
LOCAL pSockPtr AS _WINsockaddr_in
LOCAL pAddrPtr AS DWORD PTR

LOCAL dwSockID AS DWORD

// Allocate storage FOR the Windows Sockets work
area. Also allocate
// storage for the socket.
pWSAData := MemAlloc(_sizeof(_WINwsadata))
pSockPtr := MemAlloc(_sizeof(_WINsockaddr_in))

// initialize winsock
IF WSAStartup(MAKEWORD(1, 1), pWSAData) == 0

IF (pHostPtr := gethostbyname(PSZ(strDomain))
) == NULL_PTR

RETURN FALSE
ENDIF

IF(pServPtr := getservbyname(String2Psz(“smtp”), ;
String2Psz(“tcp”))) == NULL_PTR
RETURN FALSE

ENDIF

IF(dwSockID:= socket(AF_INET,SOCK_STREAM, 0)) ;
== INVALID_SOCKET
RETURN FALSE

ENDIF

pAddrPtr := pHostPtr.h_addr_list

pSockPtr.sin_port := pServPtr.s_port
pSockPtr.sin_addr := DWORD(PTR(DWORD(pAddrPtr

)))
pSockPtr.sin_family := AF_INET

IFconnect(dwSockID,pSockPtr,;
_sizeof(_winSockAddr_In))<> 0

RETURN FALSE
ENDIF

// rest of program
// release memory
MemFree(pWSAData)
MemFree(pSockPtr)

RETURN TRUE

SMTP

Once the winsock connection to the SMTP server has been esta-
blished, it is a fairly easy task to conduct the SMTP conversation.
This becomes a task of state-management. As each step of the
conversation (state) is completed, the conversation moves on to
the next state. A quick review shows the following state sequen-
ce:

HELO
MAIL FROM
RCPT TO
DATA
QUIT

The program must be able to read data from the windows sok-
ket and send data to the windows socket. This is done with the
recv() and WSockSend() functions, respectively. To get data
from the windows socket into a buffer, we must read until we
reach at least one CRLF character sequence.

49Software Development Techniques 01/2000

LOCAL sBuffer AS STRING
LOCAL iRetLength AS INT
LOCAL sLine AS STRING
LOCAL sInputStream AS STRING
LOCAL symState AS SYMBOL
LOCAL siSMTPReplyCode AS SHORTINT
LOCAL dwPos AS DWORD

LOCAL dwSockID AS DWORD

// declare other variables, initialize winsock, etc…
// initialize conversation state and input stream
symState := #START
sInputStream := “”

WHILE TRUE
// read until we get at least one CRLF
sBuffer := Buffer(128)
WHILE ! Instr(CRLF, sBuffer)

sBuffer := Buffer(128)
IF !(iRetLength:=recv(dwSockID,sBuffer,128,0x0)) > 0
RETURN FALSE

ENDIF

sBuffer := SubStr(sBuffer, 1, iRetLength)
sInputStream := sInputStream + sBuffer

END

// walk forward to last line in stream
WHILE Instr(CRLF, sInputStream)
// extract line from input stream
dwPos := At(CRLF, sInputStream)

sLine := SubStr3(sInputStream, 1, dwPos - 1)
// keep the remainder for the next line
sInputStream := SubStr2(sInputStream, dwPos +

SLen(CRLF))
END

// get SMTP reply code
siSMTPReplyCode := Val(SubStr3(sLine, 1, 3))
DO CASE
CASE siSMTPReplyCode = 220
// HELO expected – send HELO and move to next

state
sBuffer := “HELO “ + oMS:MailServer + CRLF
IF WSockSend(dwSockID, sBuffer, SLen(sBuffer),

0x0) <> ;
SLen(sBuffer)

RETURN FALSE
ENDIF
symState := #HELO

CASE siSMTPReplyCode = 250

// 250 OK – check state, process
DO CASE
CASE symState == #HELO

// send “MAIL FROM:”
sBuffer := “MAIL FROM:<” + strFrom + “>” + CRLF

IF WSockSend(dwSockID, sBuffer, SLen(sBuffer
), 0x0) <> ;

SLen(sBuffer)
RETURN FALSE

ENDIF

// advance to the next state
symState := #MAIL

CASE symState == #MAIL

// send “RCPT TO:”
sBuffer := “RCPT TO:<” + strTo + “>” + CRLF

IF WSockSend(dwSockID, sBuffer, SLen(sBuffer
), 0x0) <> ;

SLen(sBuffer)
RETURN FALSE

ENDIF
// advance to the next state

symState := #RCPT

CASE symState == #RCPT

// send “DATA”
sBuffer := “DATA” + CRLF

IF WSockSend(dwSockID, sBuffer, SLen(sBuffer
), 0x0) <> ;

SLen(sBuffer)
RETURN FALSE

ENDIF
// advance to the next state
symState := #DATA
CASE symState == #DATA

// send “QUIT”
sBuffer := “QUIT” + CRLF
IF WSockSend(dwSockID, sBuffer, SLen(sBuffer

), 0x0) <> ;
SLen(sBuffer)
RETURN FALSE

ENDIF
// advance to the next state
symState := #QUIT
EXIT

OTHERWISE
// unknown state
EXIT

ENDCASE

CASE siSMTPReplyCode == 354
// send the mail headers and data

OTHERWISE

// unknown or unhandled SMTP reply code
RETURN FALSE

ENDCASE
END

MIME Message Format

At this point, we have set up and are using a winsock connection
to the SMTP server, and have managed the SMTP conversation
using a state machine. Now all that is left is to embed the email
message in the proper format.

For the purpose of the sample program, we will send a mes-
sage of content-type text/plain, using the standard US-ASCII
character set. The message will be sent using 7Bit Content-
Transfer-Encoding.

We need to construct the message headers (envelope infor-
mation) as follows:

Now wasn’t that simple!
With a bit more work, this same program can be extended to

allow for multiple recipients, cc and bcc recipients, alternate con-
tent types and character sets, different encoding methods, and
multi-part mail messages with attachments or alternate message
body formats.

This will be left as an exercise for the reader.

Conclusion

Adding automatic email capabilities to an application enhances
its ability to reach out to its users. Email can be used to deliver
automatic event notification, event reminders, and automatic
customer feedback messages. It can also be used as a vehicle for
asynchronous communication between two remote programs.

SMTP is the de facto Internet mail standard. When used in
conjunction with the MIME standard message format, a wide
variety of email message needs can be met. The RFCs are extre-
mely valuable sources of information to the Internet developer
wishing to embark on this effort. With these in hand, creating a
program which manages the Winwock layer, the SMTP conver-
sation, and the MIME message format is fairly straightforward.
This same approach can be used to implement POP3 and
NNTP (newsgroup) client programs.

Automating the way programs communicate, not just with
their users, but with each other, brings a new degree of power to
your application.

Bibliography
RFC 821: Simple Mail Transfer Protocol, August 1982,
Jonathan B. Postel, Information Sciences Institute, University
of Southern California.
RFC 822: Standard For The Format Of Arpa Internet Text
Messages, August 13, 1982, David H. Crocker, Dept. of
Electrical Engineering, University of Delaware.
RFC 1521: MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies, September 1993, N.
Borenstein, Bellcore, and N. Freed, Innosoft.
RFC 1869: SMTP Service Extensions, November 1995, J.
Klensin, WG Chair, MCI, N. Freed, Editor, Innosoft
International, Inc., M. Rose, Dover Beach Consulting, Inc., E.
Stefferud, Network Management Associates, Inc. and D.
Crocker, Brandenburg Consulting.
RFC 1522: MIME (Multipurpose Internet Mail Extensions)
Part Two: Message Header Extensions for Non-ASCII Text,
September 1993, K. Moore, University of Tennessee.

RFC 1939: Post Office Protocol - Version 3, May 1996, J.
Myers, Carnegie Mellon and M. Rose, Dover Beach
Consulting, Inc.

RFC 977: A Proposed Standard for the Stream-Based
Transmission of News, February 1986, Brian Kantor (U.C. San
Diego) and Phil Lapsley (U.C. Berkeley).
RFC 1036: Standard for Interchange of USENET Messages,
December 1987, M. Horton, AT&T Bell Laboratories, and R.
Adams, Center for Seismic Studies.

Biography

Erik Wynn is a project manager and software architect with over 13 years
of experience. He is president of Wynn Systems Development Group,
Ltd, and specializes in object oriented application development in a
Windows environment. He has experience with a wide range of Internet
development products and technologies, and is one of the authors of the
Active Web Toolkit™, an Internet development product for the
ASP/IIS environment. He is considered to be a world-leading CA-
Visual Objects expert, and has acted as project manager, team leader, and
project advisor for several large CA-Visual Objects applications. His
interests include Internet technology, object-oriented analysis, design, and
programming, Windows programming, and the integration of productivity
tools in the development environment. He lives in the Canadian country-
side, just outside of Ottawa with his wife Paule, his son Connor, and his
daughter Keven. He can be reached on the Internet at ewynn@cactus-
com.com.

50 Software Development Techniques 01/2000

LOCAL strHeader AS STRING

strHeader := “To:<” + strTo + “>” + CRLF
strHeader += “From:<” + strFrom + “>” + CRLF
strHeader += “Subject: “ + strSubject + CRLF
strHeader += “MIME-Version: 1.0” + CRLF
strHeader += “Content-Type: text/plain;” + CRLF
strHeader += “ charset=US-ASCII” + CRLF
strHeader += “Content-Transfer-Encoding: 7bit” +

CRLF

// initialize winsock, conduct SMTP conversation
// .
// .
// .

// send message body
sBuffer := strHeader + CRLF + strMessage + CRLF +

“.” + CRLF

IF WSockSend(dwSockID, sBuffer, SLen(sBuffer),
0x0) <> ;

SLen(sBuffer)
RETURN FALSE

ENDIF

51Software Development Techniques 01/2000

Ivo Wessel

CA-VO: Project “VO-SDT — the technic as
quick as possible” (8)

After the article on SplitWindows,
ListView and TreeView controls in the
last issue, this article is dedicated to
advanced techniques for programming
of the two later-mentioned control clas-
ses. These play an even larger role in
modern applications, but they also must
be correctly implemented, so that they
demonstrate their complete efficiency
and usefulness.

Overview
Apart from the event highlights in connection with cunning and
TreeView controls, some typical programming techniques are
demonstrated with these classes. Somewhat more unusual
might be the generation of dynamic controls on TreeViews that
permit the very flexible input of data in TreeViewItems. Finally
the original label editing does not offer much clearance with
ListView and TreeView controls too, there it is obvious to use
your own control for this, that is placed at correct positions.
This consequence settles the programming of the Wheel mouse
apart from some practice tips — thus that flywheel, that finally
halfway started also in VO 2.5a, and thus may no longer be mis-
sing in your applications under any circumstances.

fig. 1: Dynamic SLE-Control on a TreeView

ListView controls

Event method ListViewItemChanged()

Frequently one would like to execute something additional to
the (automatic) highlighting at the same time that the user selects
a new line, thus a new ListViewItem. The method
ListViewItemChanged() must therefore be imple-mented. In
the following example, important interfaces are seen.
oEvent:listViewItem is the selected ListViewItem object that
should always be checked for “not a NULL_OBJECT”. It can

be accessed on the ListView control via oEvent:control. This
permits, for example, the poll in which ListView the event
occurred, as everybody knows event methods have a window-
central character and are called for all controls of the type con-
cerned.

It is often overlooked with ListViewItemChanged() that it is
called both when entering as well as when leaving a line item.
The desired point in time (that will normally be oLVI:selected,
thus the selection) is to be checked accordingly with the event
object. One can easily check that actually two lines appear in the
terminal window by an output in the IF poll—like “? Time(),
oLVI:caption“. The last-mentioned nevertheless is obvious by
the 25 “historical lines“ and is, by the way, already a part of the
system library, thus it does not have to be linked additionally by
merging the “Terminal Lite” library.

Event method ListViewKeyDown()

If one would like to react to pressed keys within a ListView con-
trol, this works at the simplest with the method
ListViewKeyDown(). The following example shows the poll of
the keys Tab and Shift+Tab. They provide with a ListView con-
trol as the “pane“ (thus area) of a Split Windows for the focu-
sing of the next or previous Panes. With a Dialog- or a
DataWindow, the focusing occurs automatically if the style (it is
deactivated according to standard) is given to the ListView con-
trol in the Window wordprocessor “Tab Stop=TRUE”.

Who still possesses the old 16-Bit-aid of the Windows SDK —
VO automatically installs the 32-bit version according to stan-
dard, in that unfortunately some useful tables are missing —,
finds there some key codes, that the otherwise compatible
KeyEvent description of the VO assistance does not mention.

Method ListViewItemChanged (oEvent) Class winSplit
Local oLVI As ListViewItem

super:listViewItemChanged (oEvent)

// oLVI := oEvent:control: ;
// getSelectedItem ()
// Besser: LVI direkt vom
// Ereignisobjekt holen
oLVI := oEvent:listViewItem

IF oLVI != NULL_OBJECT ;
.AND. oLVI:selected ;
.AND. oEvent:control == _oLivAutor
self:FillListViewTitel (oLVI)

ENDIF

Method ListViewKeyDown (oEvent) CLass winSplit
// Tastendruck im ListView-Control:
// Fokussieren des nächsten bzw.
// vorherigen Pane-Controls
// mit Tab / Shift+Tab.
super:listViewKeyDown (oEvent)

DO CASE
CASE oEvent:keyCode != VK_Tab

// do nothing
CASE GetKeyState (VK_Shift) < 0

self:SetFocusToPreviousControl ()
OTHERWISE

self:SetFocusToNextControl ()
ENDCASE

More detail is of course provided in the MSDN Library whose
acquisition (the cheapest basis version is usually completely
enough) is strongly recommended.

fig. 2: KeyCode-Tables in the VO- and in the Windows-SDK-aid

The tiresome RETURN key...

Especially, the usually most important key, Return, does not
release the event method ListViewKeyDown(). The key is to be
polled within its own dispatcher of the control class; there a
method can then be called with the owner of the control, thus
the dialog, if necessary. The releasing controls are transferred to
this key as a parameter for good reason.

Here this method is called OnReturnKey(), the delegation is
constituent of the classes livStandard and trvStandard. Over the
function IsMethod() it is naturally checked whether the owner of
control has such a method at all. The following Return 1 “swal-
lows“ all further messages, thus it is immediately branched back
after executing the Owner method.

Use of the context menu key

VO 2.5a also has learned something additional in the area of
the keyboard operation in the meantime —however I’d still have
a few ideas (and above all icons), but that is another topic... the
context menu key is in the meantime fortunately polled and per-
mits thus an efficient operation in the Repository Explorer. By

the way, with F2 – like in the file Explorer – module names (—
unfortunately they are still limited to 32 characters) can be rena-
med, a characteristic I estimate a lot. With Alt+Return you arri-
ve rapidly at the Properties dialog.

If a ListView control has a context menu, it should naturally be
possible to call it also over the keyboard. For those who still cling
to old keyboards they have grown fond of, there should be an
alternative to the menu key; there I prefer Shift+F1. Fans of a
context-sensitive help can change over to Ctl+F1, or also
Shift+F10.

Marking & focusing

A certain line of a ListView is marked by program control by
setting the appropriate flag over the interface :selected with the
ListViewItem. Usually also the focusing of this line (oLVI:focu-
sed) and the ListView control itself (over
oLivControl:setFocus()) is recommended. In the following the
flags must be updated with the ListView control, the substanti-
ally more rapid versions oLivControl:UpdateFocused (oLVI)
etc., in comparison with oLivControl:setItemAttributes (oLVI)
I already presented in the last issue, you find it in the module
“_livStandard“ of the CA-VO2. By the way, you can also order
old issues of the SDT if yours are missing...

The selection of a line takes place over
oLivControl:getItemAttributes (nItem). It supplies with the
ListViewItem object or NULL_OBJECT, the last-mentioned
must always be polled here for safety’s sake. For nItem = 1, one
receives the first line, whereas the last line would be nItem =
oLivControl:itemCount. The class ListView has a method
:EnsureVisible (nItem, lTeilweiseSichtbar) so that the marked
line is also visible in each case, that provides for
lTeilweiseSichtbar=FALSE for the line being is completely visi-
ble. If one already has the ListViewItem object, nItem can be
transferred by means of oLVI:itemIndex.

Marking methods

A listbox whose ExStyle LVS_Ex_CheckBoxes ensures that
StateImages appear in the form of check boxes that the user can
activate over mouse-click, and a dummy key is suitable particu-
larly well for the selection of items. In VO 2.5 this style can be
switched on directly in the Window word processor on the
“ExStyles” flat link. VO 2.0-user still must define it manually:

52 Software Development Techniques 01/2000

Define LVS_Ex_CheckBoxes := 0x00000004

Method Dispatch (oEvent) Class livStandard
// Bei einem Laschenfenster ohne Shell
// kommt Return bei ListViewKeyDown ()
// als einzige Taste nicht an!
// Daher separat über Dispatcher mit
// einem Aufruf einer OnReturnKey-
// Callback-Methode.
IF oEvent:message == WM_KeyUp

DO CASE
CASE oEvent:wParam == VK_Return ;

.AND. IsMethod (self:owner,
(#OnReturnKey)

Send (self:owner, ;
#OnReturnKey, self)

Return 1
ENDCASE

ENDIF
Return super:dispatch (oEvent)

...

CASE oEvent:wParam == VK_Apps .OR. ;
(oEvent:wParam == VK_F1 ;
.AND. GetKeyState (VK_Shift) < 0)
IF self:contextMenu != NULL_OBJECT

self:contextMenu:showAsPopup (;
self, self:origin)

Return 1
ENDIF

ENDCASE

...

In the CA VO21VO.AEF you find the appropriate lines in the
module “_livStandard“. For marking individual or several lines
it is best to write a central method that is called parameterized.
This makes the repeated writing of same lines unnecessary, as
for instance local control variables etc..

This technique of universal methods presents itself very fre-
quently, like for switching on or off controls, for marking and
de-marking etc.. In the following example below, the method
:HighLighCurrentDay() has a logical parameter, that equips the
method :UnHighlightCurrentDay() with FALSE; the default
allocation is TRUE. Except in the method
:UnHighlightCurrentDay(), the parameter is naturally never
used. The example makes, nevertheless, the quite complex cal-
culation of the area that should be drawn winRect unnecessary,
although, as one sees, the “highlighting” differs clearly from the
“opposite”.

Event method ListViewMouseButtonDown()

The fact that an actual sufficiently plausible method can be quite
tricky is shown by ListViewMouseButtonDown(). If one would
like to find out whether a mouse-click on the left bit-map, the
StateImage, has been caused —thus for instance the Checkbox
with oLivControl:checkBoxes = TRUE — it depends on the
switch FullRowSelect whether the Access
PointOnItemStateImage actually supplies the desired value. If
necessary, it must be determined whether the mouse position is
situated within the first column. The whole line is marked —a
ListView style, that I myself require strongly with the file

53Software Development Techniques 01/2000

Method ListViewMarkCurrent () ;
Class winSplit
self:ListViewMark (#Current)

Method ListViewMarkAll () Class winSplit
self:ListViewMark (#All)

Method ListViewInvertMark () Class winSplit
self:ListViewMark (#Invert)

Method ListViewMark (symMode) Class winSplit
// Universelle Methode zum Markieren
// in ListViews.
Local i, nLen As DWord
Local oControl As Object
Local oLVI As ListViewItem

oControl := GetObjectByHandle (GetFocus ())

IF .NOT. IsInstanceOf (oControl, #ListView)
oControl := _oLivAutor

ENDIF

IF symMode == #Current
oLVI := oControl:getSelectedItem ()
IF oLVI != NULL_OBJECT

oLVI:stateImageIndex := ;
IIF (oLVI:stateImageIndex == 1, 2, 1)

oControl:UpdateStateImage (oLVI)
ENDIF

ELSE
nLen := oControl:itemCount
// Verhindert Flackern im Control.
LockWindowUpdate (oControl:handle ())
FOR i:=1 UPTO nLen

oLVI := oControl:getItemAttributes (i)
DO CASE
CASE oLVI == NULL_OBJECT

// do nothing
CASE symMode == #All

oLVI:stateImageIndex := 2
oControl:UpdateStateImage (oLVI)

CASE symMode == #Invert
oLVI:stateImageIndex := ;

IIF (;
oLVI:stateImageIndex == ;
1, 2, 1)

oControl:UpdateStateImage (oLVI)
ENDCASE

NEXT i
LockWindowUpdate (NULL_PTR)

ENDIF

Method UnHighlightCurrentDay () ;
Class ccCalendar
// Spart die doppelte Berechnung der
// Zellen-Koordinaten etc.
self:HighlightCurrentDay (FALSE)

Method HighlightCurrentDay (lHighLight) ;
Class ccCalendar
// Markiert oder entmarkiert den
// aktuellen Tag _dCurValue.
Local winRect Is _winRect
Local nLeft, nTop, nCol, nRow As DWord
Local cText As String

Default (@lHighLight, TRUE)

nRow := Integer ((Day (_dCurValue) + ;
_DoW (_dCurValue - ;
Day (_dCurValue) + 1) - 2) / 7) + 1

nCol := _DoW (_dCurValue)

nLeft := _nLeft + (nCol - 1) * _nCellWidth + 2
nTop := _nTop + (nRow - 1) * (_nCellHeight + ;

_oSetup:HeightSpace) + 1

SetRect (@winRect, nLeft, nTop, ;
nLeft + _nCellWidth, ;
nTop + _nCellHeight)

IF lHighLight
// Bereich füllen und Tag schön
// hell ausgeben
FillRect (_hDC, @winRect, ;

_oSetup:BrushFocused)

// Text einen Hauch nach links
// verschieben, damit die Pixel der
// Normaldarstellung exakt passend
// sind -> Ausgleich der “+ 2” bei
// Zuweisung an nLeft weiter oben.
ShiftRect (@winRect, -2, 0)

SelectObject (_hDC, _oSetup:FontDays)
SetTextColor (_hDC, ;

RGB (255, 255, 255))
SetBkMode (_hDC, TRANSPARENT)

cText := Str2 (Day (_dCurValue), 2)
DrawText (_hDC, Psz (_Cast, cText), ;

SLen (cText), @winRect, ;
DT_VCENTER + DT_SINGLELINE + DT_RIGHT)

ELSE
// Bereich zum Neuzeichnen markieren
// -> Aktuellen Tag ent-markieren.
InvalidateRect (self:handle (), ;

@winRect, TRUE)
ENDIF

Explorer (praise for VO 2.5, that possesses a set UP switch here)
—, supplies oEvent:pointOnItemStateImage also, then with
TRUE, if the click occured outside of the first column — that
is so tricky that it does not switch the CHECK box under any
circumstances.

Here of course you have the advantage that such “features”
are compensatable by calls of appropriate Windows API func-
tions.

Event method ListViewColumnClick()

If this column is to be sorted ascending or descending with one
click in the column headers of a ListView, I would like to visua-
lize the sort order in the column heading concerned and beeing
clicked on by announcement of “/” or “\” (the Explorer of
Windows 2000 has finally also learned that, therefore I hope for
occasional installation also with VO 2.x...); that prevents reliably
the repeated “for safety’s sake still click another time” which can
always be observed.

The event object supplies in addition apart from the
ListView control (over the interface oEvent:control), also the
clicked column and its symbolic name, that my method
:SetSortColumn() of the class livStandard requires. In the figu-
re 1 the ListView lines are by the way sorted according to the
marking Checkbox (according to oLVI:stateImageIndex).

Label column adjusted to the right

The so-called label of a ListView, the first column, can be edi-
ted; you know this characteristic also with the Windows
Explorer. However it is not possible to format this first column
adjusted to the right. As a solution one can define, however, an
invisible column — the second (and first visible) one can then
receive any adjustment.

A column is invisible if it has the length 0 and the heading
NULL_STRING. But please make sure that — for instance in

the method:AutoSize() of the class livStandard – such columns
are never changed in their width.

Measure in pixels

In this connection the possibility is to be called of how one
can receive the width of the column in pixels.
oLivControl:getColumn (1):width e.g. supplies as well known
with the width of the first column in characters. The following
line supplies with the measure in pixels; as API function
ListView_GetColumnWidth() is naturally zero-based; for the
first column thus 0 would have to be transferred.

Owners of the VO-SDK (that then also have the source texts of
the class library) know such API functions naturally from the
module LISTVIEW.PRG. Since the source code unfortunately
does not contain any comments, one should consult the MSDN
LIBRARY also here; it contains detailed descriptions of the
CommonControls and naturally all API functions.

Edit the label column

The editing possibility of the label is activated by setting a
switch in the Window word processor. At run-time then, a
“slow doubleclick” on the label column is sufficient. More com-
fortable & compatible is the same thing with F2; but also the
activation over a PushButton or a menu option should be possi-
ble. The editing process is started with
oLivControl:EditItemLabel(); this method is then called in the
menu /Pushbutton method or in ListViewKeyDown().

The back storage of the input however does not take place
automatically. For this it is rather necessary to overwrite the
event method ListViewItemEdit() for the dialog concerned that
supplies — as usual – the point in time of the beginning and the
end of the editing process. The event object oEvent contains
the necessary information: oEvent:editEnding is to be tested for
writing back on TRUE; oEvent:editText contains the text,
oEvent:listViewItem the ListViewItem object, thus the line of
the edited cell.

Besides the appropriate API functions are naturally also avai-
lable. Thus one receives access to the complete Edit control for
instance over ListView_GetEditControl(). oEvent:lParam con-
tains the pointer on the complete _winLV_DispInfo structure
— who likes the API functions too much, could thus also test
the text by the following line:

54 Software Development Techniques 01/2000

Method ListViewMouseButtonDown (oEvent) ;
Class winSplit
Local oLVI As ListViewItem
super:listViewMouseButtonDown (oEvent)

DO CASE
CASE oEvent:isLeftButton ;

.AND. oEvent:pointOnItemStateImage
// Liefert nur bei :FullRowSelect
// == FALSE ein korrektes Ergebnis!
// Sonst oEvent:position auf
// > ListView_GetColumnWidth (;
// oEvent:control:handle (), 0)
// prüfen.
oLVI := oEvent:listViewItem
IF oLVI != NULL_OBJECT

Method ListViewColumnClick (oEvent) ;
Class winSplit
// Klick in eine ListView-Spalte sortiert
// diese Spalte aufsteigend bzw.
// absteigend.
super:listViewColumnClick (oEvent)

oEvent:control:SetSortColumn (;
oEvent:listViewColumn:nameSym)

ListView_GetColumnWidth (;
oEvent:control:handle (), nColumn - 1)

Method ListViewItemEdit (oEvent) ;
Class dlgListensort

Local winLV_DispInfo Is _winLV_DispInfo
Local cText As String

super:listViewItemEdit (oEvent)

DO CASE
CASE oEvent:editEnding

winLV_DispInfo := ;
Ptr (_Cast , oEvent:lParam)

IF PszLen (;
winLV_DispInfo.item.pszText) > 0

The following example shows some possibilities of how the
label could be written back into a column named #Pos:

SingleLineEdits for each ListView column

However, one would often like to edit all columns, not only the
label column. For this, one could place SingleLineEdit controls
dynamically directly on the ListView control. But certainly one
would have to ensure that the controls are drawn properly also
with horizontal scrolling. In the following example I want to
demonstrate the version that produces, in each case, one SLE at
run-time below the columns, that possesses the respectively fit-
ting measure. The function ListView_GetColumnWidth() that is
necessary for it and returns the measure in pixels is already
known.

Only the ListView control is to be placed in the Painter; the
SLE are produced dynamically. If you placed a framework that
surrounds the ListView control including its (later) input fields
on the window, make sure that the Groupbox is transparent. In
addition the Painter you set the transparency switch on the
ExStyles latch on TRUE. The following figure shows the dialog
in the Painter (without the SLE control) in the background, in
the foreground the window at run-time with the column input
fields.

fig. 3: Dynamically generated SLE for each column

For the implementation we need an array as instance variable, in
that we place the dynamically produced SLE control. When clo-
sing the dialog this array should be destroyed properly.

55Software Development Techniques 01/2000

Local cText As String

super:listViewItemEdit (oEvent)
DO CASE
CASE oEvent:editEnding

winLV_DispInfo := ;
Ptr (_Cast , oEvent:lParam)

IF PszLen (;
winLV_DispInfo.item.pszText) > 0
cText := Psz2String (;

winLV_DispInfo.item.pszText)

Method ListViewItemEdit (oEvent) ;
Class dlgListensort
// Problem: Wird beim Editieren des
// Label-SingleLineEdits Esc gedrückt,
// muß der alte Wert restauriert
// werden. Drückt man während des
// Editierens Return, ohne den Wert
// geändert zu haben, wird die Eingabe
// gelöscht. Also darf im Falle
// “Return gedrückt” nur dann die
// Eingabe gespeichert werden, wenn
// der neue Wert des Label-SLE ein
// anderer ist als der ursprüngliche.
Local oLVI As ListViewItem
Local cText, cBuffer As String
Local hSle As Ptr
Local nLen As DWord
Local lChanged As Logic

super:listViewItemEdit (oEvent)
oLVI := oEvent:listViewItem

DO CASE
CASE oEvent:editBeginning

_nOldValue := oLVI:getValue (#Pos)
oCCpshSortEingeben:disable ()

CASE oEvent:editEnding
lChanged := TRUE
hSle := ListView_GetEditControl ;

(oDClivData:handle ())
cText := oEvent:editText
IF hSle != NULL_PTR

nLen := GetWindowTextLength (hSle)
cBuffer := Space (nLen)
GetWindowText (hSle, Psz (_Cast, ;

cBuffer), nLen + 1)
// ? “Edit-Control: “, cBuffer

ENDIF
// ? “cText: “, cText
DO CASE
CASE Val (cBuffer) == _nOldValue

lChanged := FALSE
CASE Val (cText) == 0

oLVI:setValue (0, #Pos)
oLVI:setText (“ “, #Pos)
oLVI:stateImageIndex := 1

OTHERWISE
oLVI:setValue (Val (cText), #Pos)
oLVI:setText (cText , #Pos)
oLVI:stateImageIndex := 2

ENDCASE
IF lChanged

oDClivData:setItemAttributes (oLVI)
ENDIF
oCCpshSortEingeben:enable ()

ENDCASE

Class dlgCalendarConfig Inherit ;
dlgCalendarConfig_vo

Protect _aSle As Array

Method Init (oOwner) Class dlgCalendarConfig
super:init (oOwner)
_aSle := {}
self:CreateListView ()
self:CreateEditControls ()
self:FillListView ()
oDCsleZeilen:setFocus ()

Method Close (oEvent) ;
Class dlgCalendarConfig
super:close (oEvent)
AEval (_aSle, { | oSle | oSle:destroy (), ;

oSle := NULL_OBJECT })

_aSle := NULL_ARRAY

The columns of the ListView control are configured over an
array that contains the column heading, the symbolic name and
the measure (in characters). This configuration option I prefer a
lot (frequent readers know that) permits a reading of the data
from an external data base or INI file with only few modifica-
tion.

The SingleLineEdit controls should be arranged horizontally
below the ListView. The width of a SLE is the measure minus
5 pixels, so that they do not touch. The Picture masks of the
input fields and all further characteristics could be quite stored
in the column array, that would then however have to be defined
as protect instance variable. In our simplified case, the SLE ser-
ves for the input maximum of four digits. Of course it would be
considerable if necessary that not all ListView columns have to
be also actually visible.

The input fields receive the necessary SLE styles; their name
corresponds to that of the appropriate column. That will later
facilitate data exchange between ListView column and input field
enormously. We should however expect the fact that the sequen-
ce of the columns does not always& absolutely remain the one
of initializing: The user could shift columns with the mouse.
Our example will consider this case.

Consideration of the Tab sequence —also for dyna-
mic controls

A problem (and naturally also its solution) is likewise in the pro-
duction method. The input fields are to be arranged correctly —
that means imperceptibly – in the Tab order. After producing
the dialog however the two Pushbuttons “Ok” and “aborting”
are naturally following in the Tab order after the ListView con-
trol. The function SetWindowPos() – again a API function alre-
ady defined in Windows —ensures that the first SLE is sorted
behind the ListView-, the others behind their predecessor SLE

56 Software Development Techniques 01/2000

Method ListViewItemChanged (oEvent) ;
Class dlgCalendarConfig

Local i, nLen, nPos As DWord
Local oLVI As ListViewItem
Local symName As Symbol
super:listViewItemChanged (oEvent)
oLVI := oEvent:control: ;

getSelectedItem ()

IF oLVI != NULL_OBJECT ;
.AND. oLVI:selected
nLen := oDClivAuswahl:columnCount
// Reihenfolge der SLE muß nicht
// unbedingt mit der Reihenfolge
// der Spalten übereinstimmen; wg.
// Verschiebungsmöglichkeit etc.
FOR i:=1 UPTO nLen

symName := oDClivAuswahl: ;
getColumn (i):nameSym

nPos := AScan (_aSle, ;
{ | oSle | oSle:nameSym == symName })

IF nPos > 0
_aSle [nPos]:value := Val (;
oDClivAuswahl:getColumn (i): textValue)

ENDIF
NEXT i

ENDIF

Method CreateListView ()Class dlgCalendarConfig

Local aColumn As Array
Local i, nLen, nAlign As DWord

aColumn := ;
{ { “Nr.” , #Nr , 5 }, ;

{ “Wirkt auf”, #Wirkt , 10 }, ;
{ “Tage” , #Tage , 5 }, ;
{ “Monate” , #Monate, 5 }, ;
{ “Jahre” , #Jahre , 5 } ;

}
nLen := ALen (aColumn)

FOR i:=1 UPTO nLen
IF ALen (aColumn [i]) >= 4 .AND. ;

IsNumeric (aColumn [i,4])
nAlign := aColumn [i,4]

ELSE
nALign := LVCFmt_Left

ENDIF

oDClivAuswahl:addColumn (;
ListViewColumn { ;

aColumn [i,3], ;
HyperLabel { ;

aColumn [i,2], ;
aColumn [i,1] }, ;

nAlign })
NEXT i

Method CreateEditControls ()CLass dlgCalendarConfig
// Damit die SLE unter dem Rahmencontrol
// sichtbar sind, muß dieses im Painter
// auf transparent gesetzt sein!
Local i, nLen, nX, nY, nWidth As DWord
Local oSle As SingleLineEdit
Local oLVC As ListViewColumn

nY := oDClivAuswahl:origin:y - 28
nLen := oDClivAuswahl:columnCount
nX := oDClivAuswahl:origin:x
_aSle := ArrayNew (nLen)

FOR i:=1 UPTO nLen
oLVC := oDClivAuswahl: getColumn (i)
nWidth := ListView_GetColumnWidth (;

oDClivAuswahl:handle (), i-1)
oSle := SingleLineEdit { ;

self, -1, ;
Point { nX, nY }, ;
Dimension { nWidth - 5, 20 }, ;
WS_Child + WS_TabStop + ;
ES_AutoHScroll + WS_Border }

oSle:hyperLabel := HyperLabel { ;
oLVC:nameSym }

oSle:picture := “####”
oSle:show ()
IF i == 1

SetWindowPos (oSle:handle (), ;
oDClivAuswahl:handle (), ;
0, 0, 0, 0, ;
SWP_NoMove + SWP_NoSize)

ELSE
SetWindowPos (oSle:handle (), ;

_aSle [i-1]:handle (), ;
0, 0, 0, 0, ;
SWP_NoMove + SWP_NoSize)

ENDIF
_aSle [i] := oSle
nX += nWidth

NEXT i

control. The Tab sequence is thereby ListView —first SLE...,
last SLE, ok-Button.

Fill the SLE controls

Here once more meaningful & intelligent naming of the controls
is necessary. Since the SingleLineEdits have the same names as
the ListView columns, only the SLE control appropriate to the
current column must be looked up and equipped in a loop by the
columns. The AScan search in the SLE array costs only little
more time, but they ensure the correct filling also for the case
that the user shifted the columns. Also columns to that no SLE
was assigned are so correctly treated. Make sure with program-
ming that such boundary conditions are always fulfilled in favor
of crash security.

Since the SLE —in our example —is to be updated when
paging through the ListView control, we overwrite the event
method ListViewItemChanged() that supplies us as we know
with this point in time. Since the dialog receives only one
ListView control (and also will not experience an armament in
foreseeable time), I left out the poll on the aimed ListView con-
trol (in the type oEvent:name = = #livAuswahl) this time.

Now you will easily be able to implement in the “opposite
direction”, the updating of the lines with a modification of a
SLE control yourselves. The correct point in time would be the
event method EditFocusChange (oEvent) with NOT.
oEvent:gotFocus. Check whether there is a column with the
name of the SLE control (oDClivAuswahl:getColumn
(oEvent:nameSym != NULL_OBJECT). You receive the cur-
rent line, an object of the class ListViewItem, by oLVI: =
oDClivAuswahl:getSelectedItem(). If oLVI! =
NULL_OBJECT, then the column can receive a new value by
oLVI:setText (oEvent:control:textValue, oEvent:nameSym).
Finally you must update the ListView control by
oDClivAuswahl:UpdateText (oLVI).

Dynamic filling of ListView controls

The last consequence described the filling of ListView controls.
Now the dynamic filling is to be described here with that not all
lines (thus ListViewItems) are produced from the outset. In
addition one defines a certain Buffer-quantity (about 100 lines),
that is small enough, so that their reading in does not delay the
structuring of the window noticeably. Anyway with a selection
of for example 1000 lines (even if that is of course technically
no problem) the GUI Design would have to be considered duly.

Further lines (let’s say, another 100 ListViewItems) can be
loaded time-controlled in the background. Thus the user can
already sight the volume of data, that is gradually completed or
extended in peace. An alternative would be the attaching of a
line “further...” as last ListViewItem with a hard disk symbol or
something like that as an image to the data. With doubleclick on
this ListViewItem — it is always easy to distinguish from “real”
data by oLVI:itemIndex == oLivControl:itemCount or
oLVI:imageIndex == IDI_Weitere etc.

Beside such “further...” – “Button“ of course also an “all”
would be possible that reads in all data if the user knows what
he is doing. A run beam with aborting possibility could make the
time pass somewhat quicker for the user: As already said, you
guarantee with the conception of such dialogs by suitable means
that selection items are not “over-equipped”.

fig. 4: ListView with configurable Buffer-quantity and „reload“-Buttons

Alternative —virtual ListView...?

VO 2.5 and Windows make, in the meantime, as we all know
a virtual ListView in the form of the DataListView class availa-
ble that, similar to a Browser, also probably should replace this
in the case of VO (this makes some necessary corrections at the
Browser, as for instance the incorrect Scrollbar or display beha-
vior unnecessary). Apart from some special features already
addressed in the assistance virtual ListView controls have howe-
ver not the very practical Checkboxes and are also not able to
Muli Selekt. For these reasons I prefer the implementation of
my own, let’s say, halfvirtual version. Ist actual-practical delimi-
tations are, as mentioned, in the area of approximately four or
five figures: But I don’t want to expect more selection items
from the user anyway.

In the following example the ListView possesses an invisible
column named #Recno in that ist sentence pointer position is
stored per line. oLVI:getValue (#Recno) supplies thus with a
number bigger than zero. The two last lines, “further...” and
“all...” have a special bit-map in each case, but they also would
be recognizable from their value:getValue (#Recno) = = 0.

The window possesses a server instance variable called
_oDbServer. ListView controls can probably be also placed on
DialogWindows —in the next consequence I will however show
that one can place also a DataBrowser on DialogWindows.
Doubleclick or Return on one of the two “reloading lines” cau-
ses a reading in of further records. In addition two methods
ListViewMouseButtonDoubleClick (oEvent) and
OnReturnKey() are to write — the last one, as is described in the
front, released over the dispatcher of the livStandard class.

The method FillListView()

The number nMax of the maximal number of sentences to read
can be specified over a SingleLineEdit also by the user (who has
obviously no lack of knowledge). The method FillListView() is
additionally called in the init method of the window, so that at
least nMax records are visible from the outset. So that it is nice
and universal and can be used directly for several ListView con-
trol on a window, it receives the ListView control, the server
object and the sentence pointer number read in last.

If the third parameter is NIL, it is thus not transferred, this
is for the method the signal that the call came from the init

57Software Development Techniques 01/2000

method and it can be started with reading in. Now available
ListView entries are deleted.

Otherwise, if the server concerned has not yet reached
oServer:eof, records are to be reloaded. Then at first the two last
items, the “further...”- and the “all...”- Button from has to be
deleted from the ListView. Please note that naturally first the last
but one is to be deleted, then the lalt one. The alternative of
deleting two times the last item is naturally just as correct, but it
looks however very much like it was worth some optimization in
the source code.

As the event method ListViewItemChanged() is internally
released by deletion (or at all by changing) of ListViewItems, is
to be guaranteed that this is only executed if the user —like by
leafing through – has changed the line itself, e.g. “actively“. The
check on oLVI:focused carries that out; it is only TRUE if the
line is focused.

Here again the outline of the actual filling method:

Parameter of FillListView()

oLV ListView control (suitable thereby also for several LV)
oServer server objects (dto.)
nRecno next Recno or NILE to be read in

Structure of FillListView() for nRecno = = NIL

delete any ListView lines
oServer:goTop()

Structure of FillListView() for nRecno! = NIL

delete ListViewItem „further...“
delete ListViewItem „ all...“
oServer:recno: = nRecno

Reading routine of FillListView() for both versions

Read to nSaetze > = nMax or oServer:eof
If NOT. oServer:eof: attach Two lines „further ...“ and „all...

“

If one clarifies this rather simple block structure, also the com-
plete implementation of the method is not no longer complica-
ted — if the limitation on even times 52 characters per print line
with the SDT layout would not be there... The pictures of the
reload Buttons are defined by two constants IDI_...; imagine
that for instance a hard disk symbol is perhaps sensible for
„further...“, and a “data base ton” or such a thing for “for all...“.

if a server variable is used that possesses further Clients — other
latch windows or such a thing — one should by of course ensu-
re the data base run “in the dark” per oServer:suspend-
Notification() by renouncement of the notification of the other
Clients. Surely then the protecting & restoring of the current
sentence pointer would be sensible.

58 Software Development Techniques 01/2000

Method ListViewItemChanged (oEvent) ;
Class tabKarteiListView
Local oLVI As ListViewItem

super:listViewItemChanged (oEvent)

oLVI := oEvent:listViewItem
// oEvent:listViewItem -> Aktuelle Zeile
// oEvent:control -> Aktuelle ListView
IF oLVI != NULL_OBJECT ;

.AND. oLVI:focused

.AND. IsNumeric (oLVI:getValue (#Recno)) ;

.AND. oLVI:getValue (#Recno) > 0
// „Echte“ Zeile mit Recno-Wert aktiv
...
ENDIF

ENDIF

Method FillListView (oLV, oServer, ;
nRecno) Class tabKarteiListView

Local oLVI As ListViewItem
Local i, nLen, nMax, nCount As DWord
Local symCol As Symbol

nMax := Val (oDCslePuffer:textValue)
nCount := 0
nLen := oLV:columnCount

DO CASE
CASE .NOT. IsNil (nRecno)

// Die beiden “Weiter...” und
// “Alle...”-Icons löschen
// Löschen eines Items löst
// ListViewItemChanged (oEvent) aus.
oLV:deleteItem (oLV:itemCount - 1)
oLV:deleteItem (oLV:itemCount)
oServer:recno := nRecno
oServer:skip ()

CASE oLV:itemCount > 0
oLV:deleteAll ()
oServer:goTop ()

ENDCASE
IF oServer:eof

oLVI := ListViewItem {}
oLVI:setValue (0 , #Recno)
oLVI:setText (“ “, #Recno)
oLVI:setText (“Keine Sätze vorhanden.”, ;

oLV:getColumn (1):nameSym)
oLVI:stateImageIndex := 0
oLV:addItem (oLVI)

ELSE
DO WHILE .NOT. oServer:eof ;

.AND. nCount < nMax
oLVI := ListViewItem {}
oLVI:setValue (oServer:recno, #Recno)
FOR i:=1 UPTO nLen

symCol := oLV:getColumn (i):nameSym
IF symCol != NULL_SYMBOL ;

.AND. oServer:fieldPos (symCol) > 0
oLVI:setValue (oServer:fieldGet (;

symCol), symCol)
ENDIF

NEXT i
oLV:addItem (oLVI)
nCount += 1
oServer:skip (1)

ENDDO
IF .NOT. oServer:eof

symCol := oLV:getColumn (1):nameSym
oLVI := ListViewItem {}
oLVI:setValue (0 , #Recno)
oLVI:setText (“ “, #Recno)
oLVI:setText (“Weitere...”, symCol)
oLVI:imageIndex := IDI_Weiter
oLV:addItem (oLVI)
oLVI := ListViewItem {}
oLVI:setValue (0 , #Recno)
oLVI:setText (“ “, #Recno)
oLVI:setText (“Alle...”, symCol)
oLVI:imageIndex := IDI_Alle
oLV:addItem (oLVI)

ENDIF
ENDIF

Sorting of almost all lines

If such a ListView control equipped with two “final lines” in
form of the reload Buttons is sorted by column-clicks, it is of
course to be guaranteed that “further...” and “all...” maintain
their position, thus they are not sorted with the others. Since
VO permits the definition of any sort methods, that is very sim-
ply possible. The comfort of being able to write the sort routine
in VO code costs some OOP overhead that leads to the fact that
the assortment of about 1000 files in the Windows Explorer
actually does not pose any problem, but the thing already beco-
mes rather slowly-acting starting from 200 entries in a VO
ListView – if the sorting routines are not implemented C-like.

The event method ListViewColumnClick(), like described
above, causes the column assortment. By a poll of the column
name also the use of your own sort method for each column
would be possible. The class livStandard contains numerous
examples.

fig. 5: a view into the sortin-routines of the livStandard

For our case the condition of the distinction of that sort method
is used would depend on the oServer:eof status. Also the check
for oLivControl:getItemAttributes (oLivControl:itemCount):
itemIndex == IDI_Alle leads to the same distinction. Two sor-
ting routines that ignore the two last lines, but sort otherwise the
remaining lines in a ascending or descending way, are then loo-
king like this:

A similar technique is also used if the ListView control contains
for example a sum as the last line in each case, that should like-
wise not be sorted with the others: here it should be checked
only for self:itemCount in the first CASE.

59Software Development Techniques 01/2000

oLVI:imageIndex := IDI_Weiter
oLV:addItem (oLVI)

oLVI := ListViewItem {}
oLVI:setValue (0 , #Recno)
oLVI:setText (“ “, #Recno)
oLVI:setText (“Alle...”, symCol)
oLVI:imageIndex := IDI_Alle
oLV:addItem (oLVI)

ENDIF
ENDIF

Method ListViewColumnClick (oEvent) Class winSplit
// Klick in eine ListView-Spalte
// sortiert diese Spalte aufsteigend
// bzw. absteigend.
super:listViewColumnClick (oEvent)

IF oEvent:listViewColumn:nameSym == #Betrag
oEvent:control:SortingUpMethod :=

#SortingUpVal
oEvent:control:SortingDownMethod :=

#SortingDownVal
ELSE

oEvent:control:SortingUpMethod := #SortingUp
oEvent:control:SortingDownMethod := #SortingDown

ENDIF
oEvent:control:SetSortColumn (;

oEvent:listViewColumn:nameSym)

Method SortingUpVirtual (oLVI1, oLVI2) ;
Class livStandard
// Callback-Methode bei Aufruf von ;
// :sortItems () (z.B. in der Methode
// ListviewColumnClick ()); sorgt für
// eine aufsteigende Sortierung der
// Einträge, ignoriert die letzten
// beiden Zeilen.
Local u1, u2 As Usual
Local nIgnore As DWord

IF _symSortCol != NULL_SYMBOL
u1 := oLVI1:getValue (_symSortCol)
u2 := oLVI2:getValue (_symSortCol)
nIgnore := self:itemCount
DO CASE
CASE u1 == u2 ;

.OR. oLVI1:itemIndex == nCount ;

.OR. oLVI2:itemIndex == nCount ;

.OR. oLVI1:itemIndex == nCount-1 ;

.OR. oLVI2:itemIndex == nCount-1
Return 0

CASE u1 < u2
Return -1

OTHERWISE
Return 1

ENDCASE
ELSE

Return 0
ENDIF

Method SortingDownVirtual (oLVI1, oLVI2) ;
Class livStandard
// Wie oben, aber absteigende Sortierung.
Local u1, u2 As Usual
Local nCount As DWord
IF _symSortCol != NULL_SYMBOL

u1 := oLVI1:getValue (_symSortCol)
u2 := oLVI2:getValue (_symSortCol)
nCount:= self:itemCount
DO CASE
CASE u1 == u2 ;

.OR. oLVI1:itemIndex == nCount ;

.OR. oLVI2:itemIndex == nCount ;

.OR. oLVI1:itemIndex == nCount-1 ;

.OR. oLVI2:itemIndex == nCount-1
Return 0

CASE u1 < u2
Return 1

OTHERWISE
Return -1

ENDCASE
ELSE

Return 0
ENDIF

Time-controlled dynamic reloading of ListViewItems

Timers can be announced in VO 2.5 (which has not been
documented before) also over the window
method:RegisterTimer(). However only whole second values
can be transferred here for inexplicable reasons (particularly in
the age of the gigahertz processors...), that limits the resolution
to 1 second. The resolution in Windows amounts to neverthe-
less about 50 msec, so that values of 100 or 200 msec can be
quite useful also with data base accesses. The aid conceals by the
way also that a timer can be reset also without closing of the
window by RegisterTimers(). When destroying the window a
possibly defined timer is however naturally terminated automati-
cally.

The good, classical version over SetTimers(), KillTimer and
poll of WM_Timer in the window dispatcher is naturally also
continuing to be possible, offers the mentioned resolution of 50
msec and should therefore be used here. By the way such timer
vents arrive always at the main window with use in a latch win-
dow (thus a window of a Tab-control); therefore the example of
such a latch window, that is informed by the main window about
the method OnTimer() of the end of the time interval should be
implemented.

The class tabAutor_ListView has two instance variables
_oDbAutor (an object of a server class like for example
dbAutor) and _nNextRecno; the last DWord value is 0 at the
beginning (this provides for the necessary „first deleting“ of
possibly available data) and then contains in each case the Recno
of the next data record to be read. Otherwise the methodology
resembles naturally very much to the “halfvirtual“ version; per
timer flow a next data record is added to the ListView here so
long, until the sentence pointer reached EOF. As said; the com-
bined application of a certain Buffer number would be surely
useful here.

Since reading in the record should really not occur in the bak-
kground and not influence the acting of the user in the window,
the loop notes at the beginning the active control, that is finally
focused again.

TreeView controls

Event method TreeViewSelectionChanged()

Like with ListView controls a “line change”, thus the moving
within the control, can be intercepted over the event method. In
the case of a TreeView the event object oEvent possesses two

60 Software Development Techniques 01/2000

Method Init (oOwner, nCtrlID, oServer) ;
Class dtaAutor
super:init (oOwner, nCtrlID, oServer)

SetTimer (self:handle (), 1, ;
1000, NULL_PTR)

Method Close (oEvent) Class dtaAutor
KillTimer (self:handle (), 1)
super:close (oEvent)

Method Dispatch (oEvent) Class dtaAutor
IF oEvent:message == WM_Timer ;

.AND. IsMethod (oDCtabControl:currentPage, ;
#OnTimer)

Send (oDCtabControl:currentPage, ;
#OnTimer)

ENDIF

Return super:dispatch (oEvent)

Method OnTimer () Class tabAutor_ListView
// Siehe Dispatch () der Klasse dtaAutor
// -> Wird alle 1000 msec aufgerufen.
// self:owner:caption := Time ()
IF .NOT. _oDbAutor:eof

self:FillListViewWithTimer (;
oDClivAutor, _oDbAutor)

ENDIF

Method FillListViewWithTimer (oLV, ;

oServer) Class tabAutor_ListView

Local oLVI As ListViewItem
Local i, nLen, nRecno As DWord
Local symFeld As Symbol
Local nFocus As Ptr

nFocus := GetFocus ()
nLen := oLV:columnCount

IF oLV:itemCount > 0 ;
.AND. _nNextRecno == 0
oLV:deleteAll ()

ENDIF
nRecno := oServer:recno
oServer:suspendNotification ()
IF _nNextRecno == 0

oServer:goTop ()
ELSE

oServer:recno := _nNextRecno
ENDIF
IF oServer:eof

// Jetzt könnte z.B. auch der Timer
// des dtaAutor-Fensters
// zurückgesetzt werden, weil
// die Liste vollständig
// eingelesen worden ist.
// _nNextRecno := 0

ELSE
oLVI := ListViewItem {}
FOR i:=1 UPTO nLen

symFeld := oLV:getColumn (i):nameSym
IF oServer:fieldPos (symFeld) > 0

oLVI:setValue (;
oServer:fieldGet (;
symFeld), symFeld)

ENDIF
NEXT i
// Recno merken in der unsichtbaren
// Spalte (die keinen Text hat!)
oLVI:setValue (oServer:recno, #RECNO)
oLVI:setText (“” , #RECNO)
oLV:addItem (oLVI)
// 500 msec Nixtun simulieren, damit
// man sieht, wie die Sätze
// zeitverzögert eingelesen werden.
// Sleep (500)
// Sleep (100)
oServer:skip (1)
_nNextRecno := oServer:recno

ENDIF
oServer:recno := nRecno
oServer:resetNotification ()
// Alle Spaltenbreiten werden optimiert
oLV:AutoSize ()
IF nFocus != NULL_PTR

SetFocus (nFocus)
ENDIF

interfaces oEvent:oldTreeViewItem and
oEvent:newTreeViewItem, over that the old (let’s say, the aban-
doned) and the new selected TVI is in the access. The following
example displays the active TVI with fat Font; when leaving this
is to be reset again. Also here one should always test on “oTVI
!= NULL_OBJECT”, since otherwise a poll like oTVI:bold cau-
ses a crash for boundary conditions that are perhaps rare, but in
practice nevertheless occurring, if oTVI is NULL_OBJECT.

Expanding and collapsing

There is another useful version to expand a TreeView-Control
that is not in the IDE: the possibility to collapse the inner nodes
but to expand the root elements. In the VO Tree the project
names would then be visible, their applications & libraries howe-
ver invisible. With each creation or deletion of a project (that is
supposed to occur sometimes times; and I also have more than
one or two projects...) all nodes are expanded, after that I tend
to restart VO again; that can be done much faster than the toil-
some manual collapsing of the projects.

Fig. 6: Thein a moment only the letter elements A to Z will be seen...

If the TreeViewItem, that one inserts into the root is for exam-
ple called #_Root, such a neat expanding of the
oTreeView:expand (#_Root) is possible very easily. Here a few
describing code lines:

One could then also eliminate a second unpleasantness in the
VO-IDE: During recursive collapsing of a tree one should
ensure by LockWindowUpdate() that Windows does not draw
the Tree again. This API function permits the locking of a win-
dow or a control; in the case of a TreeView-Control the items
and above all the usually hyperactively bouncing scrollbar are
updated as the last thing, after renewed call of the function with
parameter NULL_PTR. My two methods from the CAVO2IVO
call a common recursive method ExpandCollapseAll(), that use
this function.

The common recursive function ExpandCollapseAll ()

The first parameter lExpanding controls the behavior of the
method; TRUE expands the branch, FALSE collapses it accor-
dingly. Since the expanding/collapsing of the nodes only differs
by this value, a common method is once more very usful.

61Software Development Techniques 01/2000

Method TreeViewSelectionChanged (oEvent) ;
Class winSplit
// Aktuelle Zeile in fettem Font
Local oTVI As TreeViewItem

super:treeViewSelectionChanged (oEvent)
oTVI := oEvent:oldTreeViewItem
IF oTVI != NULL_OBJECT

oTVI:bold := FALSE
oEvent:control:setItemAttributes (oTVI)

ENDIF
oTVI := oEvent:newTreeViewItem
IF oTVI != NULL_OBJECT

oTVI:bold := TRUE
oEvent:control:setItemAttributes (oTVI)

ENDIF

oTVI := treeViewItem { #_Root, “Visual Objects 2.5” }
oTreeView:addItem (#Root, oTVI)

Method CollapseAll () Class trvStandard
// Alle Ebenen zuklappen
Local oTVI As TreeViewItem

LockWindowUpdate (self:handle ())

oTVI := self:getRootItem ()
DO WHILE oTVI != NULL_OBJECT

self:ExpandCollapseAll (FALSE, oTVI)

// Nächstes Kind im Tree
oTVI := oTVI:nextSibling

ENDDO
LockWindowUpdate (NULL_PTR)

Method ExpandAll () Class trvStandard
// Alle Ebenen aufklappen
Local oTVI As TreeViewItem

LockWindowUpdate (self:handle ())

oTVI := self:getRootItem ()
DO WHILE oTVI != NULL_OBJECT

self:ExpandCollapseAll (TRUE, oTVI)

// Nächstes Kind im Tree
oTVI := oTVI:nextSibling

ENDDO
LockWindowUpdate (NULL_PTR)

Method ExpandCollapseAll (lExpanding, ;
oTVI) Class trvStandard
// Alle oder einen Zwei zu- oder
// aufklappen
IF oTVI == NIL

// Kein Parameter angegeben:
// Ist ein TVI gewählt?
oTVI := self:getSelectedItem ()

DO CASE
CASE oTVI == NULL_OBJECT

// Nein -> Dann alle auf-/
// zuklappen; ab der Wurzel.
oTVI := self:getRootItem ()

CASE oTVI:value != NIL
// In ein Nicht-Knotenelement
// geklickt
// -> Suche Elternelement
oTVI := self:getParentItem (oTVI:nameSym)

ENDCASE

Marking & focusing

Selecting such TreeViewItems, that are invisible as in collapsed
branches of the tree, is almost amazingly simple and automati-
cal. You only have to hand over the (unique!) name of the des-
ired items as a parameter to the method oTreeView:selectItem
(symName). The control then ensures for the fact that the
nodes are expanded accordingly, and the item appears within the
visible area.

Thus for instance a dialog is to be seen in the following figu-
re, that sorts all controls of a window into a Tree by the push of
a button, whereby for each available type of control such as
Pushbutton, SingleLineEdit etc. a node is produced . If the user
now marks a control on the main mask (it is bordered, that one
should also be able to detect on the screenshot), it appears in the
Tree control with its user rights data. With this, all controls can
be provided with user right-specific data such as “display”,
“hide”, “disable” etc. at runtime in each window. Beside the
selection on the mask itself (naturally also multiselect, lassoing
etc. is possible here) controls can also be specified over the Tree.
From here thus all PushButtons canbe marked with one click.

If you ask yourself how to click on the controls without acti-
vating these (also the mouse pointer remains the normal arrow):
No, the control classes are not derived individually (the dialog is
to function on each window...): the controls will be provided with
the style WS_Disabled on push of a button. They then remain
nicely rich in contrast (in contrary to:disable()), and mouse clik-
ks etc. now directly arrive at the window without detour over the
control.

Fig. 7: oTreeView:selectItem() expands the Tree if necessary.

Dynamic filling of TreeView-Controls

With this version—normal filling was already described in the
last edition—the reading of the node data only takes place if the
node is expanded by the user. With a very large quantity of data
(however as one can see for example at the registry editor, is
actually hardly critical with Windows the 9x, NT, 2000 etc.) one
could remove the data when collapsing again.

The central method here is the event method
TreeViewItemExpanded(), that is called , if a node is expanded
or collapsed. Over oEvent:collapsed or oEvent:expanded one
can decide whether data is to be read. oEvent:treeViewItem con-
tains the current line in the TreeViewItem object.

The call of a method like :FillTreeView (oTVI) would thus have
to take place in the ELSE branch of the above IF query. So that
a TVI can be detected as node even if it is unfilled, it thus pos-
sesses the “expand bit-map” in form of a plus sign, that should
produce a dummy TVI with oTVI:value == NIL and is recog-
nizable as dummy over the value query on NIL. This would
have to be deleted then with the “correct” filling of the TVI.

The following method FillTreeViewABC() equips a tree with
the letters “A” to “Z” and provides those letters with an empty
NIL TreeViewItem, whose search is successful in the author file.
There is for example an author, whose surname begins with an
“E” receives this TVI item and thus a plus button.

62 Software Development Techniques 01/2000

Method FillTreeViewABC () Class winSplit
Local symName As Symbol
Local oTVI As TreeViewItem
Local oDbTitel As dbTitel
Local i As DWord
Local cChar, cOrder As String

oTVI := TreeViewItem { ;
#_Root, ;
“Autoren & ihre Bücher”, ;
NIL, ;
IDI_Root, ;
IDI_Root }

_oTrvAutor:addItem (#Root, oTVI)
FOR i:=1 UPTO 26

oTVI := TreeViewItem { ;

ENDIF
IF lExpanding

oTVI:expand ()
ELSE

oTVI:collapse ()
ENDIF
oTVI:treeViewControl:setItemAttributes (oTVI)

oTVI := oTVI:firstChild
DO WHILE oTVI != NULL_OBJECT

// Sich rekursiv durch den Baum
// hangeln...
self:ExpandCollapseAll (;

lExpanding, oTVI)
oTVI := oTVI:nextSibling

ENDDO

Method TreeViewItemExpanded (oEvent) ;
Class winSplit
// Icon “Buch” umschalten
Local oTVI As TreeViewItem

super:treeViewItemExpanded(oEvent)

oTVI := oEvent:treeViewItem

IF oTVI != NULL_OBJECT ;
.AND. oTVI:nameSym != #_Root
// Nur bei Klick auf Nicht-
// Wurzel-Element
IF oEvent:collapsed

oTVI:imageIndex := IDI_Closed
oTVI:selectedImageIndex := IDI_Closed

ELSE
oTVI:imageIndex := ;
oTVI:selectedImageIndex := ;

IDI_Open
ENDIF

oEvent:control:setItemAttributes (oTVI)
ENDIF

As one can see, there is a special meaning to the value of
oTVI:value of a TreeViewItem. With a database TreeView con-
trol, whose items are filled from a DBF, it would be useful to for
example deposit the recno of the record there. The query for
NIL would then identify such nodes and the highest root ele-
ment, that does not possess correspoan equivalent in the DBF.

The above method for reading a node could then look the
following way:

An own value class for oTVI:value

Frequently it is not sufficient however to assign a number or a
simple data type to this value. Clipper 5-Experts (genuine, no
semi-Summer-87-programers...) will think back to the progressi-
ve achievements and possibilities of the TBColumn-cargo-

slots... As a VO programmer one here uses its own class, whose
instances exeptionally may even be of the type “export”.

Such a class is not inherited; the export instances are permit-
ted in as much as that the necessity for verification of the code,
in order to prevent for example an incorrect overwriting of
values necessarily does not exist. Here the class only has the
sense to package different values and to organize it through only
one single object, that is stored in the oTVI:value.

In the case of the user-right trees shown in the figure the
appropriate control in each TVI, the window, on that the red
marking framework is drawn (that does not necessarily have to
be the owner of the control; for instance with split- or tabcon-
trols), the current marking status and the boundingbox, thus the
square that has to be updated.

Such a class for the packaging of data does not only correspond
a lot to the object-oriented thinking, but is actually also very pro-
blem and also “environmentally” compatible: In the daily life we
group and organize sections to a whole one; nobody would have
the strange idea to move with all things not packed & put into
cartons —therefore the transfer of a dozen parameters to a
function should also appear quite “unnatural”... Such classes can
also be therefore much more complex, as a further example will
show:

The following class describes the data of a setup object, whose
values determine the appearance of a calendar. One can surely
estimate quite well the functionality to be expected in some sec-
tions of that instance variable. Additionally this class has some
protect instance variables that can only be accessed over appro-
priate methods. That is also very usual with such data packages.
Altogether all values are then available through one object that
can be easily passed on for example. With further options, that
frequently become necessary with extensions, nothing else is to
be adapted except for the class CalendarSetup itself.

63Software Development Techniques 01/2000

Method FillTreeView (oTVI_Autor) Class winSplit
Local cSchl As String
Local oTVI As TreeViewItem

IF IsNumeric (oTVI_Autor:value) ;
.AND. oTVI_Autor:value > 0
_oDbAutor:recno := oTVI_Autor:value
cSchl := _oDbAutor:fieldGet (#SCHL_AUTOR)
IF _oDbTitel:seek (cSchl)

// Licht ausschalten
LockWindowUpdate (oDCtrvTitel: ;

handle ())
// Dummy löschen
oTVI := oDCtrvAutor:getFirstChildItem (;

oTVI_Autor:nameSym)
IF oTVI != NULL_OBJECT

oDCtrvAutor:deleteItem (oTVI)
ENDIF
// Alle Titel des Autors einlesen
DO WHILE .NOT. _oDbTitel:eof ;

.AND. _oDbTitel:fieldGet (;
#SCHL_AUTOR) == cSchl
oTVI := TreeViewItem { ;

String2Symbol (“TITEL_” + ;
NTrim (_oDbTitel:recno)), ;
Trim (_oDbTitel:fieldGet (;
#TITEL)), ;
NIL }

oDCtrvTitel:addItem (;
oTVI_Autor:nameSym, oTVI)

_oDbTitel:skip (1)
ENDDO
// Licht wieder einschalten
LockWindowUpdate (NULL_PTR)

ENDIF
ENDIF

Class TreeViewItemUserRights
Export Control As Control
Export Marked As Logic
Export Window As Window
Export BoundingBox As BoundingBox

Class TreeItem
Export NameSym As Symbol
Export Caption As String
Export Type As Symbol
Export ImageIndex As DWord
Export Parent As Symbol
Export Value As Usual
Export ValueType As String
Export ReturnBlock As _Codeblock
Export EditClass As Symbol
Export EditWidth As DWord
Export EditMode As DWord
Export Picture As String
Export Disabled As Logic

// Für #ListView-Control:
Export Columns As Array
Export ServerName As Symbol
Export ValueColumn As Symbol

String2Symbol (Chr (64+i)), ;
Chr (64+i), ;
NIL, ;
IDI_Closed, ;
IDI_Closed }

oTVI:stateImageIndex := 0
_oTrvAutor:addItem (#_Root, oTVI)
IF _oDbAutor:seek (Chr (64+i))

_oTrvAutor:addItem (;
String2Symbol (Chr (64+i)), ;

TreeViewItem { ;
String2Symbol (Chr (i)), ;
“”, NIL })

ENDIF
NEXT i

A test for unique TVI names

The most popular and most persistent error when filling
TreeView controls is the inadvertent assignment of not unique
names of the TreeViewItem objects. The standard display is
usually not even influenced negatively by that; but the expanding
and collapsing of the nodes still functions correctly. Only for
example while searching in each case the first hit gets selected.

A simple test is the recursive method:ExpandAll(), that
expands all nodes (remember the classical retaining problem...).

If it does not end, this is an unfailing sign that within a node at
least two TreeViewItem lines carry the same oTVI:nameSym
name, that is transferred to the init method as the first parame-
ter.

You can find the method as a method of the base class
trvStandard in the module “_trvStandard” of the current
CAVO2IVO.AEF, that already was attached to the last issue. You
can likewise find Methods for the output of all nodes and to
expand all nodes there; They are so useful that they fit quite well
to the base class. Thus they are available for testing purposes at
any time. Similar to the internal VO methods of the class libra-
ry, their names begin with two underlines.

Editing of a TreeViewItem

Editing a TVI similarly occurs as described above with the
ListView control. The event method TreeViewItemEdit
(oEvent) of the Window class receives an object of the class
TreeViewEditEvent as a parameter that has again the necessary
interfaces, that permits the query for the new text. Also here
afterwards the value is to be written back into the TreeViewItem.

Own controls in the TreeView

It is more comfortable to produce custom controls. Like that
it will be usually more useful, to insert one’s own SingleLineEdit
in a suitable place to allow the editing of the label with double-
clicks instead of using the onboard utility (thus exactly over the
text of the Caption of the TreeViewItem). That is actually less
difficult, than it may perhaps seem at first sight. Thus a techni-
que is at our disposal, that permits any controls for the modifi-
cation of TreeViewItems. Finally we cannot only exactly confi-
gure the characteristics of the SLE class for the desired purpo-
se, but also insert a combobox for instance.

Fig. 8: Edit a TreeViewItems through a dynamic SLE control

However, for your information, the method
:GetItemBoundingBox() that returns the object of the class
BoundingBox, thus a square type, at the position of a TVI is
incorrect. The developer mistook the coordinates of the values
for “left” and “bottom” at the selection. Since we introduced
our own base class trvStandard anyways (in the CAVO2IVO),
that is derived from TreeView (and since VO fortunately is not
calledVisual Functions), the modification is not very dramatical.

64 Software Development Techniques 01/2000

Class CalendarSetup
Export MarginLeft As LongInt
Export MarginTop As LongInt
Export MarginRight As LongInt
Export MarginBottom As LongInt

Export HeightSpace As LongInt
Export HeightHeader As LongInt
Export HeightDayLine As LongInt
Export HeightFooter As LongInt
Export HeightDescription As LongInt

Export WidthWeekLine As LongInt

Export AlignFooter As DWord
Export AlignDescription As DWord

Export BrushBackgroundFocused As Ptr
Export BrushBackground As Ptr
Export BrushFocused As Ptr
Export BrushHeader As Ptr
Export BrushFooter As Ptr
Export BrushDescription As Ptr

Export PenBlack As Ptr
Export PenGray As Ptr
Export PenFocused As Ptr

Export FontName As String
Export FontDays As Ptr
Export FontHeader As Ptr
Export FontFooter As Ptr
Export FontDescription As Ptr

Export ShowHeader As Logic
Export ShowFooter As Logic
Export ShowDescription As Logic

Export MarkWeekend As Logic
Export IsHeaderActive As Logic
Export IsFooterActive As Logic
Export IsDescriptionActive As Logic

Export FirstDayOfWeek As DWord

Protect _oIni As IniFile
Protect _aColor As Array
Protect _aBrush As Array
Protect _aDays As Array

Access Days
Method Axit ()
Method GetBrush (nItem)
Method GetColor (nItem)
Method Init ()
Method ReadBrushesFromIni ()
Method ReadColorsFromIni ()
Method ReadDaysFromIni ()

Thus we can already determine the coordinates over the follo-
wing line, necessary for a dynamic SingleLineEdit; this is to
exactly take the position of the TVI label. However still some
instance variables are necessary for the window class. Thus we
need _oControl, in that the produced control is stored. Over the
flag _lEditControlIsActive it can be queried whether the control
is still active. The inquiry on query on _oControl! =
NULL_OBJECT is not so reliable as we will later see. The
instance variable _oTV contains the TreeViewControl.

Function GetAveCharWidth()

Additionally we will need a function that determines the average
width of a character. After all the width of the desired (to be cre-
ated dynamically) SLE control is to be indicated both in pixels
and in characters.

Click into emptiness

With active SLE control one must naturally intercept some pos-
sible actions of the user. He could click outside of the SLE, or
take away TreeView control over the scrollbars. Up-to-date
equipped users could naturally also have the idea to turn the
mouse wheel with active SLE. All these actions must store the
SLE back into the TreeViewItem (if one would accept the value)
and destroy the SLE. This method is to be written for the win-
dow (that controls the SLE in form of the instance variables
_oControl) and it is very simple:

The beginning of the above situations is naturally much more
difficult. We need its own TreeView class in each case, so that we
can react on the appropriate events. We have to write a new
method GetItemBoundingBox() anyways to correct the error of
the 2.5-Version. Since doubleclicking on the TVI creates the
SLE (by the method still the one that can be
shown:CreateEditControl()), it is however not focused. We gua-
rantee the activation in the dispatcher —and ensure for the fact
that that does not occur a second time by setting the flag. Here
thus the characteristics of the class trvAuswahl:

65Software Development Techniques 01/2000

Method GetItemBoundingBox (symItem, lTextOnly) ;
Class trvStandard
// Korrigierte Fassung der
// Original-Methode
Local hItem As Ptr
Local strucRect Is _winRect
Local oOrigin As Point
Local oSize As Dimension

Default (@lTextOnly, false)

hItem := self:__GetHandleFromSymbol (symItem)
strucRect.left := long (_cast, hItem)
IF logic (_cast, SendMessage (;

self:Handle(), TVM_GETITEMRECT, ;
dword(_cast, lTextOnly), ;
long(_cast, @strucRect)))
// BUG 2.5a: left und bottom
// vertauscht ******************
oOrigin := Point { strucRect.left, ;

strucRect.bottom }
oOrigin := __WCConvertPoint (self, oOrigin)
oSize := Dimension{ ;

strucRect.right - strucRect.left, ;
strucRect.bottom - strucRect.top}

Return BoundingBox {oOrigin, oSize}
ENDIF
Return BoundingBox {}

Class winAuswahl Inherit SplitWindow
Protect _oFont As Font
Protect _oTV As TreeViewAuswahl

Protect _oControl As Control

// Notwendiges Flag, damit auch bei
// einem Doppelklick auf ein
// SingleLineEdit das SLE _oControl
// fokussiert wird. Siehe
// Dispatcher der Klasse TreeView.
Protect _lEditControlIsActive As Logic

Function GetAveCharWidth (;
oControl As Control) As DWord
// Ermittelt die durchschnittliche
// Breite eines Zeichens
// in einem Control.
Local tm Is _winTextMetric
Local hDC As Ptr

Method DestroyEditControl ()Class winAuswahl
// Durch Doppeklick etc. erzeugtes
// SingleLineEdit wieder zerstören.
IF _oControl != NULL_OBJECT

_oControl:destroy ()
_oControl := NULL_OBJECT

IF .NOT. InCollect ()
CollectForced ()

ENDIF
ENDIF

hDC := GetDC (oControl:handle ())
GetTextMetrics (hDC, @tm)
ReleaseDC (oControl:handle (), hDC)

Return tm.tmAveCharWidth

Class trvAuswahl Inherit trvStandard

Method VerticalScroll (oEvent) Class trvAuswahl
IF self:owner:EditControl != ;

NULL_OBJECT

self:owner:SaveEditControl ()
self:owner:DestroyEditControl ()

ENDIF

super:verticalScroll (oEvent)

Method Dispatch (oEvent) ;
Class trvAuswahl
// Ansonsten ist das SLE nach einem
// Doppelklick in den Tree das SLE
// nicht aktiv zu kriegen; nach dem
// Doppelklick bleibt der Focus auf
// dem Tree (was man auch daran
// erkennen kann, daß die Tree-Zeile
// blau bleibt).
// Abfrage auf self:owner:EditControl
// != NULL_OBJECT und GetFocus () !=
// self:owner:EditControl:handle ()
// funktioniert nicht zuverlässig.

Obviously we must be able to access some protect instance vari-
ables of the window class winAuswahl from methods of the
trvAuswahl class. Since protect variables —nomen est omen; or
packaging is everything —do not permit this, we need some
interfaces:

SingleLineEdit class sleTreeView

Naturally also certain events in the SingleLineEdit control itself
must be intercepted. So for instance the keys VK_Return,
VK_Up, VK_Down and VK_Tab have to close the SLE and
write back the value. Pushing the Esc key terminates the input
without saving. Thus we also need your own class here:

Write SLE control back into the TreeViewItem

When storing the SLE control back in the TVI naturally a type
adjustment would be possible. In the concrete case the
oTVI:value value is an object of the above class TreeItem, that
contains for example also an export instance variable:ValueType
with the type of the SLE control. In the simplified case natu-
rally the text input in the SLE can be written back over
oTVI:textValue := _oControl:textValue into the TreeViewItem.
You should however never forget in no case an updating of the
TreeView control: _oTV:setItemAttributes (oTVI).

Trigger of the SLE production

That dynamic SingleLineEdit control can alternatively be produ-
ced with one doubleclick on a TreeViewItem or when selecting
a TVI. You will find both (very managable) versions following
next:

66 Software Development Techniques 01/2000

Access EditControl Class winAuswahl
// Schnittstelle für den Zugriff auf das
// Edit-Control auch von trvAuswahl aus.
Return _oControl

Access EditControlIsActive Class winAuswahl
// Schnittstelle für den Workaround in
// trvAuswahl. Siehe Method Dispatch ()
// Class trvAuswahl
Return _lEditControlIsActive

Assign EditControlIsActive (lActive) ;
Class winAuswahl
Return _lEditControlIsActive := lActive

Class sleTreeView Inherit SingleLineEdit

Method Dispatch (oEvent) Class sleTreeView
DO CASE
CASE oEvent:message == WM_KeyDown

// Ausgelöst werden kann das SLE
// auch über TreeViewKeyDown ()
// (TreeViewKeyUp () gibt es nicht);
// daher ist die Taste noch gedrückt,
// wenn das SLE aufgebaut wird. Damit
// es nicht gleich
// wieder geschlossen wird, muß hier
// WM_KeyDown abgefragt werden.
DO CASE
CASE InList (oEvent:wParam, ;

VK_Return, VK_Up, VK_Down, VK_Tab)
self:owner:owner:SaveEditControl ()
self:owner:owner:DestroyEditControl ()
Return 1

CASE oEvent:wParam == VK_Escape
self:owner:owner:DestroyEditControl ()
Return 1

ENDCASE
ENDCASE

Return super:dispatch (oEvent)

Method SaveEditControl (oTVI) CLass winAuswahl
// Wert des SingleLineEdits in das
// TreeVieItem übertragen.

IF IsNil (oTVI)
oTVI := _oTV:getSelectedItem ()

ENDIF
IF oTVI != NULL_OBJECT

oTVI:textValue := _oControl:textValue
_oTV:setItemAttributes (oTVI)

ENDIF

Method TreeViewMouseButtonDoubleClick (;
oEvent) Class winAuswahl
// Wird aufgerufen bei Doppelklick im
// TreeView.
Local oTVI As TreeViewItem

super:treeViewMouseButtonDoubleClick (oEvent)

oTVI := oEvent:treeViewItem

IF oEvent:isLeftButton ;
.AND. oTVI != NULL_OBJECT

self:CreateEditControl (oTVI)
ENDIF

Method TreeViewSelectionChanged (oEvent) ;
Class winAuswahl
// Zeile im TreeView-Control wurde
// geändert. Bei Auswahl einer neuen
// Zeile im Tree bei geöffnetem
// Edit-Control ist dieses zu speichern
// und zu zerstören.
Local oTVI As TreeViewItem

super:treeViewSelectionChanged (oEvent)

oTVI := oEvent:oldTreeViewItem

IF oTVI != NULL_OBJECT
IF _oControl != NULL_OBJECT

self:SaveEditControl (oTVI)
self:DestroyEditControl ()

ENDIF
ENDIF

oTVI := oEvent:newTreeViewItem

IF oTVI != NULL_OBJECT
self:CreateEditControl (oTVI)

ENDIF

// Besser ein eigenes Flag, daß man
// eindeutig zurücksetzen kann.
DO CASE
CASE self:owner:EditControlIsActive

self:owner:EditControlIsActive := FALSE
self:owner:EditControl:setFocus ()

ENDCASE

Return super:dispatch (oEvent)

Now finally: producing SLE on a TreeView control

Now we groped our way sufficiently careful towards the actual
method. Finally all accessory entities are available and we can
turn towards the method CreateEditControl(), that creates an
SLE at the position of the doubleclicked or selected
TreeViewItem. The position and size of the SLE determine the
boundingbox of the TVI; the TreeView control is the owner of
the control. Besides the (neutral) ID –1 the usual SLE styles are
transferred.

Programming of a Wheel Mouse
Not only in the sourcecode editor of VO the wheel is used now
(to try it, if you were just thinking how to do: Ctrl+mousek-
heel). A wheel mouse normally functions automatically for
Windows controls with Scrollbars that allow to leaf through; but
for instance when increasing/reducing items, with
CustomControls users think of them as useful. Also one should
not be frightened of combinations with SHIFT /Ctrl /Alt key.

With the described production of a dynamic SLE control for
editing a TreeViewItems a wheel movement should close a pos-
sibly active SLE and write its value back accordingly. The above
dispatcher of the TreeView class trvAuswahl is to be supple-
mented by only a few lines of code. Window message
WM_MouseWheel is (still?) not defined in VO 2.5. Such values
can be determined in addition, marvelously by the VO example
“Private Eye” (that is a very comfortable and extremely useful
tool for spying Windows applications and windows).

If WM_MouseWheel arrives in the dispatcher of a window
or a control over the oEvent:message message, the wheel was
operated. If the wheel was turned upward, the HiWord value
oEvent:wParam is –120, otherwise 120. The direction of rota-
tion plays no role for the trvAuswahl example, but it can howe-
ver be queried otherwise.

Finally still another example, how one could also test combina-
tions with the SHIFT /Ctrl /Alt key and the mouse wheel. I do
not like to use latter version, because after releasing the Alt key
the menu of a window is focused. The other examples control
the leafing possibilities of a calendar. Note that the negative
value –120 doesn’t gets along with the comparison of the
HiWord (oEvent:wParam) and must therefore be casted to a
word.

67Software Development Techniques 01/2000

Method CreateEditControl (oTVI) ;
Class winAuswahl
// Erzeugt in _oControl ein Control der
// Klasse sleTreeView. Das Control muß
// aber nicht unbedingt ein SLE sein!
// Denkbar wäre auch eine Combobox
// oder dergleichen.
Local oBoundingBox As BoundingBox
Local nLeft, nBottom, nWidth, ;

nHeight As DWord
Local symClass As Symbol

// Sollte ein Control noch da
// sein: Sauber zerstören.
self:DestroyEditControl ()

// Bug in 2.5a: Korrigierte Methode!
oBoundingBox := ;

_oTV:GetItemBoundingBox (;
oTVI:nameSym, TRUE)

nHeight := 20
nLeft := oBoundingBox:origin:x - 2
nBottom := _oTV:origin:y + ;

oBoundingBox:origin:y – 2
nWidth := oBoundingBox:width

symClass := #sleTreeView

_oControl := CreateInstance (;
symClass, ;
_oTV, ;
-1, ;
Point { nLeft, nBottom }, ;
Dimension { nWidth, nHeight }, ;
WS_Child + WS_TabStop + ;
ES_AutoHScroll)

_oControl:value := oTVI:textValue
_oControl:show ()

Define WM_MouseWheel := 0x020A

Method Dispatch (oEvent) Class trvAuswahl
CASE oEvent:message == WM_MouseWheel ;

.AND. self:owner:EditControl != ;
NULL_OBJECT
// HiWord (wParam) == 120 (Drehung
// nach unten) bzw. -120 (nach oben)
self:owner:SaveEditControl ()
self:owner:DestroyEditControl ()

ENDCASE
Return super:dispatch (oEvent)

Method HandleMouseWheelMessage (oEvent) ;
Class ccCalendarStandard
// WM_MouseWheel -> Wochenweise scrollen
// Shift + WM_MouseWheel -> Tageweise scrollen
// Strg + WM_MouseWheel -> Monatsweise scrollen
// Alt + WM_MouseWheel ->

DO CASE
// Alt+Drehung nach oben ->
CASE HiWord (oEvent:wParam) == 120 ;

.AND. GetKeyState (VK_Menu) < 0
// Alt+Drehung nach unten
CASE HiWord (oEvent:wParam) == ;

// geändert. Bei Auswahl einer neuen
// Zeile im Tree bei geöffnetem
// Edit-Control ist dieses zu speichern
// und zu zerstören.
Local oTVI As TreeViewItem

super:treeViewSelectionChanged (oEvent)
oTVI := oEvent:oldTreeViewItem
IF oTVI != NULL_OBJECT

IF _oControl != NULL_OBJECT
self:SaveEditControl (oTVI)
self:DestroyEditControl ()

ENDIF
ENDIF
oTVI := oEvent:newTreeViewItem
IF oTVI != NULL_OBJECT

self:CreateEditControl (oTVI)
ENDIF

// Workaround-Flag; siehe
// Dispatch () Klasse trvAuwahl
_lEditControlIsActive := TRUE

ENDIF

Before I forget...
A few little things between the lines, that I would not like to con-
ceal, should close the article. Small deviations from the other-
wise always extremely severe topic timetable are permitted here.

Pallet window title

Who would like to perhaps once use those narrow window title
borders, like one can frequently find in pallet windows —the
window editor of VO uses them for example —, does not pos-
sibly suspect at all that they are naturally available in VO appli-
cations. However they can be assigned not in the window edi-
tor, but require little manual work, for example in the init
method of a window: or naturally directly as method of a win-
dow base class.

As one can see, the redrawing of the area underneath the title
border is necessary -this area will otherwise be transparent and
lets the background gleam through unpleasantly when setting the
WS_Ex_PaletteWindow style. The manifold universal API
function SetWindowPos() —with it controls can also be shifted
or for instance be provided with a new tab order— here provi-
des the necessary “view density”.

Fig. 9: Dialog with pallet window style

Right-justified SingleLineEdit controls for VO 2.0, too

That in former times needed still another “smart control” class,
whose palpation jerks and displays one had to build in laborious
small and manual work oneself, is finally generally available since
Windows 98/NT ff: SingleLineEdit control with right-justified
display. I gladly used a MultiLineEdit control trimmed on sin-
gle-lineness, that already possessed this style - VO 2.5 users final-
ly find the style “ExAlignment=Right“ on the latch “ExStyles”
in the window editor that is ideal for numbers in particular.

VO 2.0 users do not have to grief here —a renouncement of
transfer to the current version is hereby however by any means
not talked about... The new style WS_EX_RIGHT cannot be
assigned however dynamically, thus subsequently approximately
with oSleControl:setExStyle (WS_EX_RIGHT). The possibili-
ty of attaching it to the generated resources entity is possible, but
rather frustrating: you may repeat that then with each new gene-
ration of the code...

In addition, the new style can be built easily into the available
CAVOWED.INF of the version 2.0. With the SingleLineEdit
properties on the latch “ExStyles“, “ExAlignment” adjustment
can then be selected between “left” and “right”. If you look at
the generated window resources with activated “right” switch,
then you will discover the new style WS_EX_RIGHT at the end
of the SLE control.

Add the following two lines in addition to the sections “[
controls]“ and “[StdProperties]“. In the line “ExStyles“, attach
the new variable “ExAlignment“ and receive a further
Combobox with the two values “Left“ and “right”. Backing up
the old CAVOWED.INF does not harm at all... The lines natu-
rally are to be entered without word wrap.

68 Software Development Techniques 01/2000

Word (_Cast, -120) ;
.AND. GetKeyState (VK_Menu) < 0

CASE GetKeyState (VK_Menu) < 0
// do nothing: Alle anderen
// Alt+Rad abfangen

// Shift+Drehung nach oben ->
CASE HiWord (oEvent:wParam) == 120 ;

.AND. GetKeyState (VK_Shift) < 0
self:SkipDays (-1)

// Shift+Drehung nach unten
CASE HiWord (oEvent:wParam) == ;

Word (_Cast, -120) ;
.AND. GetKeyState (VK_Shift) < 0
self:SkipDays (+1)

CASE GetKeyState (VK_Shift) < 0
// do nothing: Alle anderen
// Shift+Rad abfangen

// Strg+Drehung nach oben ->
CASE HiWord (oEvent:wParam) == 120 ;

.AND. GetKeyState (VK_Control) < 0
self:SkipMonths (-1)

// Strg+Drehung nach unten
CASE HiWord (oEvent:wParam) == ;

Word (_Cast, -120) ;
.AND. GetKeyState (VK_Control) < 0
self:SkipMonths (+1)

CASE GetKeyState (VK_Control) < 0
// do nothing: Alle anderen
// Strg+Rad abfangen

// Drehung nach oben ->
CASE HiWord (oEvent:wParam) == 120

self:SkipDays (-7)
// Drehung nach unten
CASE HiWord (oEvent:wParam) == ;

Word (_Cast, -120)
self:SkipDays (+7)

ENDCASE
Return 1

Method SetPaletteStyle () Class dlgWindow
// Paletten-Caption; schmaler und mit
// nicht-fettem Systemfont.
// Transparenter Balken unterhalb der
// Caption muß neu gezeichnet werden.
SetWindowLong (self:handle (), GWL_ExStyle, ;

_Or (GetWindowLong (self:handle (), ;
GWL_ExStyle), WS_Ex_PaletteWindow))

SetWindowPos (self:handle (), NULL_PTR, 0, 0, ;
self:size:width, self:size:height, ;
_Or (SWP_NoMove, SWP_DrawFrame))

CONTROL “”, TABKARTEISTAMM_VO_NACHNAME, ;
“Edit” , ES_AUTOHSCROLL|WS_TABSTOP| ;
WS_CHILD|WS_BORDER, 64, 20, 134, 12, ;
WS_EX_CLIENTEDGE|WS_EX_RIGHT

69Software Development Techniques 01/2000

Variable resources path

A Screenshot in the last output already revealed it; but, the pos-
sibility of specifying the path of resources as for instance a bit-
map icon or a cursor over a variable seems to have not yet got-
ten around very much. The advantage —particularly together
with the renouncement of the generated entities —facilitates the
exchange with other developers. At all one should keep bitmaps,
icons etc. in its own DLL with large applications. In the case of
modification of the directory structure then the correction of
the resources paths is a thing only one “search and replacing”
action.

The variable “%ExecutableDir%” contains indicated direc-
tory under file, setup. In the case of a modification however
VO is to be left briefly, since it is only covered with the start of
the program. How one can see, the relative paths can also be
indicated.

Outlook and temporary conclusion
No, no fears —in the next issue of the SDT this will natu-

rally continue. Topic will probably then be the most underesti-
mated and the least of all assigned control: or did you already
program a CustomControl? You will be surprised, how simple
their implementation is: and how beautiful things you can pro-
gram with it... Briefly said, it is used whenever you like to draw
a control completely yourself whenever one of the standard
components does not correspond to the desired purpose.

As incentive & luring a few examples of CustomControls:
see fig. 10 below...

VO has a completely pleasing example in form of a calendar
AxtiveX control. However once more the description of the
basic methodology lacks: an inquiry resulted that even expert
VO users do not use this useful control, since they do not know,
how one starts at all —and don’t suspect at how simple it is after
all. They will not be able to get along without CustomControls
any longer with the release of the next issue of the SDT...

The files on that CD correspond to those from the last issue;
the smaller tips can be entered rapidly by manual input or be cut
out of the PDF file on the CD. Updating and or other VO
examples can be found shortly on my Homepage. Finally:
Consider my new EMail address please, my previous
CompuServe ID is not valid any more.

Ivo Wessel

EMail: email@ivo-wessel.de

[CONTROL]
ExWindowStyle08=ExAlignment,WS_EX_LEFT:

WS_EX_RIGHT(EXALIGNMENT)

[StdProperties]
EXALIGNMENT=Left,Right
...
ExStyles=(Extended Window Styles)

Clip Siblings, Right-To-Left Reading,
No Parent Notify,Accept Files,
Transparent,Client Edge,Static Edge,
Modal Frame,ExAlignment

Resource icoU11 Icon %ExecutableDir%\..\bmp\Krank.ico

