

The whole FlagShip 8 manual consist of following sections:

Section Content

GEN
General information: License agreement & warranty, installation
and de-installation, registration and support

LNG
FlagShip language: Specification, database, files, language
elements, multiuser, multitasking, FlagShip extensions and
differences

FSC
Compiler & Tools: Compiling, linking, libraries, make, run-time
requirements, debugging, tools and utilities

CMD
Commands and statements: Alphabetical reference of FlagShip
commands, declarators and statements

FUN Standard functions: Alphabetical reference of FlagShip functions

OBJ
Objects and classes: Standard classes for Get, Tbrowse, Error,
Application, GUI, as well as other standard classes

RDD Replaceable Database Drivers

EXT
C-API: FlagShip connection to the C language, Extend C
System, Inline C programs, Open C API, Modifying the
intermediate C code

FS2 Alphabetical reference of FS2 Toolbox functions

QRF
Quick reference: Overview of commands, functions and
environment

PRE Preprocessor, includes, directives

SYS
System info, porting: System differences to DOS, porting hints,
data transfer, terminals and mapping, distributable files

REL
Release notes: Operating system dependent information,
predefined terminals

APP
Appendix: Inkey values, control keys, ASCII-ISO table, error
codes, dBase and FoxPro notes, forms

IDX Index of all sections

fsman

The on-line manual “fsman” contains all above sections, search
function, and additionally last changes and extensions

multisoft Datentechnik, Germany

 Copyright (c) 1992..2017
 All rights reserved

Object Oriented Database Development System,

Cross-Compatible to Unix, Linux and MS-Windows

Section PRE

Manual release: 8.1

For the current program release see your Activation Card,
or check on-line by issuing FlagShip -version

Note: the on-line manual is updated more frequently.

Copyright

Copyright © 1992..2017 by multisoft Datentechnik, D-84036 Landshut, Germany. All rights

reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a

retrieval system, or translated into any human or computer language, in any form or by any

means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties

without the express written permission of multisoft Datentechnik. Please see also "License

Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks

FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark

of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft, Unix of AT&T/USL/

SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products named herein may

be trademarks of their respective manufacturers.

Headquarter Address

 multisoft Datentechnik E-mail: support@flagship.de
 Schönaustr. 7 support@multisoft.de
 84036 Landshut sales@multisoft.de
 Germany

Phone: (+49) 0871-3300237 Web: http://www.fship.com

mailto:support@flagship.de
mailto:support@multisoft.de
mailto:sales@multisoft.de
http://www.fship.com/

 PRE 1

PRE: FlagShip Preprocessor Directives

PRE: FlagShip Preprocessor Directives ... 1

1. Overview ... 2

1.1 Notation ... 2

1.2 Case-Sensitivity ... 2

1.3 Immediately Executed Directives .. 3

1.4 Translation Directives .. 3

1.5 Priority of Translation Directives ... 4

1.6 Examining the Results .. 5

1.7 Example of Use ... 5

1.8 Difference to Clipper ... 6

#Cinline ... #endCinline ... 7

#command, #xcommand .. 8

#comments, #nocomments ... 15

#debug_off #debug_on ... 16

#define, #undef ... 17

#error... 20

#ifdef, #ifndef ... #else ... #endif .. 21

#include ... 23

#stdout .. 26

#translate, #xtranslate... 27

Index ... 29

PRE 2

1. Overview

One of the FlagShip compiler tasks is the preprocessor. For details refer to section FSC.1.1.

The preprocessor performs syntactical source checking and the translation and/or execution

of special preprocessor directives. The output of this task is written into files with a .bp

extension.

The preprocessor directives are part of the FlagShip source program, which also include other

statements, declarations and commands. These directives are instructions to the compiler/

preprocessor rather than statements controlling the program execution.

By using the directives, user-defined commands (UDC) may also be specified - or in extreme

cases, the standard command meaning may be changed. In fact, most of the standard

commands are automatically translated to FlagShip standard functions. This is done using the

preprocessor directives specified in the automatically included "std.fh" file.

1.1 Notation

Preprocessor directives must appear on a separate line and always begin with a hash symbol

#. Following the hash symbol, optional white space is allowed.

FlagShip preprocessor directives are also accepted if the line starts with white space (blanks

or tabs).

With a semicolon ";" at the end of line, you may continue a preprocessor directive into the next

source line.

Inline comments using //, && and /*...*/ are supported in FlagShip directives. During the

preprocessor phase, such comments will first be removed and they therefore do not influence

the final translation.

The FlagShip directives are comparable to directives or pragmas of the C compiler. In C, the

hash symbol must appear at the first column of the source line in order to be accepted.

1.2 Case-Sensitivity

In FlagShip, preprocessor directives and their arguments are not case-sensitive, except for

the identifier of the #define, #ifdef and #ifndef directives, which are.

Using the Open C API (see section EXT), all standard C directives and pragmas are also

supported within the C program block. These are always case-sensitive.

 PRE 3

1.3 Immediately Executed Directives

These directives instruct FlagShip to perform the required action, e.g. to insert another file, to

compile the program block only when a specified condition is met, etc.

Directive Description

#include "<filename>" Include a file into the current source
#ifdef <identifier> Compile only when the identifier exists

#ifndef <identifier> Compile when identifier does not exist

#else Optional part of the #ifdef or #ifndef structure

#endif End of the #ifdef or #ifndef structure
#comments Transfer full-line comments into the .c file

#nocomments No transfer of full-line comments into the .c file
#stdout [<message>] Display a message during compilation

#error [<message>] Display error message and terminate compilation
#debug_off Temporarily disable debugger, if active

#debug_on Enable debugger, unset #debug_off status
#Cinline Start of the inline C source. Transfer all following lines directly into

the .c file

#endCinline End of the inline C source

The executable or conditional directive operates only in the current program line.

1.4 Translation Directives

The translation directives are used to modify standard program statements, re-define user-

defined commands and to declare symbolic names instead of constants. When the

preprocessor encounters such directives, it does not execute them immediately, but stores

them on an internal stack in order to perform a translation of all subsequent program lines,

when the directive rule applies.

Directive Description

#define <identifier> [<constant>] Defines a manifest constant

#undef <identifier> Remove the #defined identifier
#command <pattern> => <result> Translates a user-defined command starting with a

pattern which may be abbreviated

#xcommand <pattern> => <result> Translates a user-defined command starting with

pattern. Does not allow abbreviation
#translate <pattern> => <result> Translates a literal. The pattern may be abbreviated

#xtranslate <pattern> => <result> Translates a literal, without abbreviation

These directives have a file-wide scope, i.e. they are valid from the current program line until

the end of the current program file is reached.

PRE 4

1.5 Priority of Translation Directives

The preprocessor collects the translation directives on an internal stack (in first-in / last-out

order) and checks all following program lines to determine if the translation directive applies.

The #define directive can also be specified when invoking the FlagShip compiler. The -D

switch is then valid for the whole .prg file.

Translation directives can also influence other, specified directives on the stack. The directive

given last has highest priority overriding a previous one.

Nesting of translation directives is allowed. This means that one directive may influence all

previously defined directives. For example:

 #command EFGH <file> => myudf(<"file">) /* Priority three */
 #command ABCDEF <file> => EFGH <file> /* Priority two */
 #define XyZ ABCD /* Priority one */

 XyZ myname // myudf("myname")
 AbcDE anyname // myudf("anyname")
 EFGH other // myudf("other")
 XyZ XyZ // myudf("ABCD")

As the preprocessor encounters a translation directive, it checks previous definitions in order

to perform substitutions. The order of precedence is: #define, #[x]translate, and

#[x]command. When there is a match, the substitution is made to the resulting text and the

entire line is reprocessed until there are no more matches for any of the translating definitions.

For this reason, you must avoid recurrence. The following directives would produce an infinite

loop and would result in a compiler error:

 #define Aaa BBB
 #define BBB Aaa
 x = BBB + 10 // compiler error
 Aaa = 4 // compiler error
 aaa = 4 + Aaaa // o.k.

Because the translation directives are processed first-in / last-out, place the most general case

first, followed then by the more specific ones. This assures that the appropriate rule will match

the command specified in the program.

Since the #include "std.fh" file, which contains many #command and #define directives,

is issued automatically by the FlagShip preprocessor (except when the compiler switch

- nI<file> is used) at the program start, all subsequently defined #command, #translate or

#define directives (e.g. in the .prg file or in other #include files) will override the default

translation of the same pattern.

 PRE 5

1.6 Examining the Results

To check the preprocessor translation, invoke the FlagShip compiler with the -a option and

examine the .bp file produced with the same name.

1.7 Example of Use
 *** file test.prg
 /* #include "std.fh" this file is included automatically */

 #ifdef FlagShip // compiling with FlagShip ?
 #stdout Compiling with FlagShip
 #include "inkey.fh"
 #else
 #stdout Compiling with Clipper
 #include "inkey.ch"
 #endif

 #translate XYZ => abc
 #COMMAND FLUSH => DBCOMMIT() /* available in Fox */
 #command OPENDBF <*line*> => USE <line> ;
 ; IF NETERR() ;
 ; QUIT ;
 ; ENDIF
 #define ESCAPE_KEY 27
 #define NONEXCLUSIVE SHARED

 #Command SET FILES TO LOWERCASE ;
 => fs_set ("lower", .T.); fs_set ("pathl", .T.)

 #Command SET AUTOTRANSLATE [<how:ON,SET>][OFF][UNSET] ;
 => fs_SET ("lowerfile", <.how.>) ;
 fs_SET ("pathlower", <.how.>)

 Set File to Lower // fs_set ("lower", .T.)
 // fs_set ("pathl", .T.)
 SET AUTOtransl ON // fs_set ("lowerfile", .T.)
 // fs_set ("pathlower", .T.)

 OpenDbf Myfile NONEXCLUSIVE NEW // USE myfile SHARED NEW
 // IF NETERR ()
 // QUIT
 // ENDIF

 Flush // DBCOMMIT()
 xyz = Xyz () // abc = abc ()
 SET AUTOtransl OFF // fs_set ("lowerfile", .F.)
 // fs_set ("pathlower", .F.)

 #ifdef FlagShip
 #Cinline
 chdir ("/tmp") /* execute C statement */
 #endCinline
 ? "changed to directory", CURDIR()
 #else
 #error Cannot change directory in DOS
 #endif
 Close Data // close database
 *** eof test.prg

PRE 6

1.8 Difference to Clipper

Both FlagShip's and Clipper's preprocessor work nearly equivalent, while FlagShip's does it

more precisely:

1. The main difference between FS and Clipper is in the "translation" handling of the <match

marker>s. In Clipper, a simply textual replacement is done, whereas in FlagShip the result

is checked to see if it is actually valid expression.

2. The use of operators (such as ":=", "=", "-=", ":", "<" etc.) as a keyword (match marker)

may result in unexpected results or will not be translated at all, because of (1). If so,

replace the operator at the left side of the translation directive by a keyword (for example

the ":=" operator by the "_IS_" keyword, "=" by "_EQ_" etc.). Your directives and sources

then remain backward compatible to Clipper as well.

3. The optional list match [<var,...>] works slightly differently from Clipper, because of (1).

As a general rule, you should specify markers following fix command parts first and put

the optional (repeating) markers at the command end.

4. Note that non-optional repeating markers <var,...> (i.e. comma-separated markers) are

resolved differently from the optional markers [<var,...>] where the comma is also

optional.

5. When possible, don't translate command names to themselves #command but translate to

another command (see e.g. the @..GET in std.fh) which simplifies the preprocessor's

task.

6. If two or more optional matches e.g. [<var,...>] are used but not coupled with command

keywords e.g. [COLOR <var,...>], the preprocessor is not always sure about how to match

because of (1). You should then use e.g. <keyw1> <xx1> [<xx2>,...] <keyw2> <yy1>

[<yy2>,...].

7. You should also use #command instead of #xcommand in repeated translations with the

std.fh (such an additions to @..SAY etc), since the clauses are often abbreviated there

(refer e.g. to std.fh approx. line 530).

8. You may check the translation of your directives in the <source>.bp file when compiling

with "FlagShip -a <source>.prg".

 PRE 7

#Cinline ... #endCinline

Syntax:

#Cinline /* case sensitive */
<any valid C statements> /* case sensitive */

#endCinline /* case sensitive */

Purpose:

Delimits C code included in the .prg source.

Arguments:

none.

Description:

Along with the Extend C and Open C API System, FlagShip also supports

programming C directly within the .prg file. This is a very comfortable way to invoke

a function from the Unix or Windows library, speed up complicated calculation, etc.

The FlagShip preprocessor transfers all the lines between #Cinline and

#endCinline directly into the resulting .c file. The C code must therefore comply with

the standard C syntax (statements are terminated with a semicolon, only /*...*/ and

//... comments are supported, a sequence of code is enclosed in curly brackets {...}

etc.). Additionally, no other FlagShip directives apply to the C code between

#Cinline...#endCinline, while C pragmas and directives may be used.

To access variables in the .prg part, use LOCAL...AS or STATIC...AS typed variables

given in lowercase, or use macros and functions of the Open C System. For details,

refer to the section EXT.4.

If local or external C variables are required, the whole C program block has to be

enclosed in curly brackets {...}.

To be able to generate automatic PROCEDURE <filename> (see LNG.2.3) when

compiled w/o -na switch, at least one FlagShip statement must precede the #Cinline

directive. Best to place #Cinline..#endCinline within usual PROCEDURE or

FUNCTION body. To declare C function(s), place #Cinline...#endCinline at the

begin of .prg file and compile with -na switch.

For more information about inline C programming, refer to sections EXT.3 and LNG.8.

Example:

See examples in sections LNG.8, EXT.3, EXT.4 and CMD.CALL.

Compatibility:

Available in FlagShip only.

Related:

EXT.3, Open C System, CALL command

PRE 8

#command, #xcommand

Syntax:

#command <pattern> => [<result>]
#xcommand <pattern> => [<result>]

Purpose:

Specifies a user-defined command directive.

Arguments:

<pattern> is the input which the text should match. It defines the translated command

(refer also to sections CMD and LNG) and must follow the command syntax rule.

The <pattern> consists of literal symbols (keywords and clauses) and optional

variables, enclosed in angle brackets, e.g. <var>, complying to the FlagShip

variables naming convention. The keyword must be given. The entire entry is not

case-sensitive.

=> This equals sign immediately followed by a greater than sign is a literal part of the

syntax and separates the <pattern> from the <result>.

<result> is the text to be produced if a portion of the input text matches the <pattern>.

It may include literal constants, clauses and result variables <var> enclosed in

angle brackets. The whole <result> part of the syntax is optional. The resulting

expression must comply with valid FlagShip syntax. If no <result> is specified,

an empty line is produced.

Description:

The #[x]command directive provides a way of re-defining a user- defined command

as any other command or function. You can use a command in place of an expression

or function call to define the order of keywords, required arguments, combinations of

arguments that must be specified together, and mutually exclusive arguments, at

compile time rather than at runtime.

The #command directive is also used in the std.fh file to substitute standard commands

by a function invocation, providing its arguments in the proper order.

The #command directive supports abbreviating the matching pattern (keyword and

clauses) up to four characters, while #xcommand only translates patterns exactly as

given. All other rules apply for both directives.

#[x]command is similar to #[x]translate, but it matches only if the input text is a

complete statement, while #[x]translate also matches input text which is not a

complete statement. In general, #[x]command is used for most user-defined

commands, while #[x]translate is used only in special cases.

There are several subtle issues you need to recognize to properly specify a command

definition. Many commands require more than one #command directive because of

mutually exclusive clauses containing different keywords or arguments, for example

the SET command in the std.fh file. This is also true when a result pattern contains

 PRE 9

different expressions, functions, or parameter structures for different clauses

specified in the same command (e.g., the @...SAY command).

You may re-define standard [x]command's from std.fh or stdfoxpro.fh by your own

(e.g. in the .prg or your own .fh file), the last definition is the most current (lifo order

= last-in-first-out).

Pattern:

The <pattern> of the directive may consist of several parts, separated by at least one

white space (blank or tab):

1. Keyword, corresponding to the translated command in the program source. (The

command starts at the beginning of the line, leading blanks are ignored. For more

information, refer to section LNG.2.4). Specify the full length of the keyword.

#command will then also accept a program entry abbreviated with a maximum of

four leading characters.

 #command COMMIT => DBcommitALL()

 #command FLUSH => DBcommit()

2. Mandatory clauses and literal symbols which must appear in the input text in

order to activate the translation directive. The #command directive will also accept

a program entry abbreviated with up to four leading characters of the clause.

Examples:

 #command CLEAR SCREEN => CLS

 #command CLEAR MEMORY => __MClear()

 #command DO WHILE <*line*> => WHILE <line>

3. Optional clauses and literal symbols which can appear in the input text. These

optional clauses are enclosed in brackets [...], along with their arguments

(variables) and additional clauses. A sequence of optional clauses allows their

order to be interchanged in the matching text. The optional clauses may be

nested. Examples:

 #command GO [TO] <rec> => GOTO <rec>

 #command SET PRINTER [TO <(fi)>] [<how:ADDIT,APPEND>] ;

 => SET (24, <(fi)>, <.how.>)

4. Mandatory or optional variables, specifying the command arguments. The

variables, holding the input text, are enclosed in angle brackets <...>. There are

five types of pattern variable notations:

 <var> Regular match variable

<var,...> List match variable

<var:word list> One-of-list match variable

<*var*> Wildcard match variable

<(var)> Extended expression variable

PRE 10

 ● Regular match variable <var> saves the next legal expression of the input

text, e.g. the command argument. The matched text is represented by a simple

variable (having scope and visibility for the current directive only). Examples:

 #command MYCMD <arg> => myfun (<arg>, .T.)

 #command GOTO <rec> => DBGOTO (<rec>)

 ● List match variable <var,...> saves a comma-separated list of legal

expressions. If there is no input text match, the specified variable does not

contain anything.

 The list match variable defines command clauses which have lists as arguments.

Typically these are FIELD clauses or expression lists used by database

commands. When there is a match for such a variable, the list is usually written

to the resulting text using either the "simple" or the "conditional" stringify result

variable. Lists are often also written as literal arrays by enclosing the result

variable in curly {...} braces. Examples:

 #command ?? [<list,..>] => QQOUT (<list>)

 #xcommand MYLIST <fld,..> => __dblist ({<fld>}, .T.)

 ● One-of-list match variable <var:text[,text]> matches the input only to one text

in a comma-separated list. If the input text does not match at least one of the

searched text patterns, the match fails and the variable contains nothing. It is

often used with the "logified" result variable to write a .T. if there is a match, or .F.

otherwise (when the match variable is defined as optional). There are two special

signs which may be used in the list: the ampersand &, which will match any valid

macro expression, and the hash #, which will match any valid identifier, such as

variable or function names. Examples:

 #command MYCMD <arg:ON,OFF> => myfun (<.arg.>)

 #command SETTING <arg:ON,OFF,&> => myset (<(arg)>)

 #command SET KEY <num> TO <proc:#>[([<dummy,...>])] ;

 => SetKey (<num>, {|p1,p2,p3| <proc>(p1,p2,p3)})

 ● Wildcard match variable <*var*> matches any input text from the current

position to the end of the statement. It is often used to stringify or ignore the rest

of a command line. Examples:

 #xcommand TEXT1 <*txt*> => QOUT (<(txt)>)

 #command SET PATH [TO] <*path*> => SET (6, <(path)>)

 #command SHUSE <*arg*> => USE <arg> SHARED

 #command ENDDO <*txt*> => END

 ● Extended Expression variable <(var)> matches a regular or extended

expression, including a filename, path specification etc., where the regular match

variable may fail, e.g.

 #command SET DEFAULT [TO] <(path)> => SET (7, <(path)>)

 #command DELETE FILE <(file)> => FErase(<(file)>)

 PRE 11

Result:

The <result> portion of a translation directive is the text the preprocessor will produce

if the <pattern> was found in the input text. The <result> syntax starts after the =>

symbol of the #command directive and may consist of several parts, separated by at

least one white space (blank or tab):

1. Any literal text, that is written directly to the result text, including any valid

keyword, clause or name of the FlagShip language. These words are written

directly to the resulting text. Special characters (like [,], < or >) of the text must

be preceded with a backslash \ . Examples:

 #command SET TALK <*rest*> ;

 => * \<unsupported\> SET TALK <rest>

 #command GOFIRST => GOTO TOP

 #xtranslate LASTGET => ATAIL(GetList)

 #xtranslate GET_NUM (<nr>) => GetList \[<nr>\]

 #command MYCMD [EVERY [TIMES] [<xx>]] => OTHER (<xx>)

 Set Talk Off // * <unsupported> SET TALK Off

 x = LastGet // x = ATAIL(GetList)

 y = GET_NUM(2) // y = GetList [2]

 GOFIRST // GOTO TOP

 GOFIR // GOTO TOP

 GOFIRST anything // GOFIRST anything [no match]

 MYCMD // OTHER ()

 MYCMD EVERY // OTHER ()

 MYCMD EVERY 20 // OTHER (20)

 MYCMD EVER TIME anything // OTHER (anything)

2. Mandatory and/or repeating result variables, matching the <pattern> variable

names, enclosed in angle brackets <...>. There are six types of result variable

notations:

 <var> Regular result variable

#<var> Always-stringified result variable

<"var"> Simple stringified result variable

<(var)> Conditional stringified result variable

<{var}> Conditional blockified result variable

<.var.> Logified result variable

 ● Regular result variable <var> writes the contents of the input pattern text,

represented by <var>, to the resulting text as is. If no input text for <var> was

found, the result of <var> is empty. Examples:

 #command GOTO <rec> => DBGOTO (<rec>)

 #command MYCMD [<arg>] => myfun (<arg>, .T.)

 GOTO 25 // DBGOTO (25)

 GOTO anything // DBGOTO (anything)

PRE 12

 GOTO anything else // GOTO anything else [no match]

 MYCMD // myfun (, .T.)

 MYCM anything // myfun (anything, .T.)

 ● Always stringified result variable #<var> stringifies the contents of the input

<var> with "...", '...' or [...] depending on the text contents and writes it to

the resulting text. No match in the input text results with a null string "". If the

input is a list <var,...>, the resulting string is the entire list enclosed in ""

symbols. It is generally used for commands where the arguments are specified

as a literal value but the resulting text must always be written as a string, even if

the argument is not specified.

 #command MYCMD <arg,...> => myfun (#<arg>)

 #command SET COLOR TO [<*arg*>] => SetColor (#<arg>)

 MYCMD xyz // myfun ('xyz')

 MYCMD abc, xyz // myfun ('abc,xyz')

 SET COLOR TO // SetColor ('')

 Set Color To &var // SetColor ("&var")

 set colo to W+/B,N/W // SetColor ('W+/B,N/W')

 set colo to 'W+/B,N/W' // SetColor ("'W+/B,N/W'")

 ● Simple stringified result variable <"var"> writes the contents of the input

<var> to the resulting text. It is similar to the always stringified variable, but if the

input is a list <var,...>, it stringifies each element of the list. This is generally

used for commands, when results should be separately stringified, for example:

 #command MYCMD <arg,...> => myfun (<"arg">)

 #command SET FILTER TO <expr> => ;

 DBSETFILTER (<{expr}>, <"expr">)

 MYCMD abc // myfun ('abc')

 MYCMD abc, def, ghi // myfun ('abc','xyz','ghi')

 SET FILT TO zip > 1234

 // DBSETFILTER ({|| zip>1234}, 'zip > 1234')

 ● Conditional stringified result variable <(var)> is similar to <"var"> but it

stringifies text only if the input <var> text is not enclosed in quotes or parentheses

or is not any form of macro. If no input text matched, it writes nothing to the

resulting text. If the input is a list <var,...>, every element of the list is stringified

by this conditional rule. It is usually used for commands which can be specified

as a literal or a parenthesed expression, e.g. the standard commands USE, SET

INDEX etc.

 #command MYCMD <arg> => myfun (<(arg)>, .T.)

 MYCMD abc // myfun ('abc', .T.)

 MYCMD "abc" // myfun ('abc', .T.)

 MYCMD (var + "xyz") // myfun (var + 'xyz', .T.)

 PRE 13

 ● Conditional blockified result variable <{var}> writes the matched input <var>

text as a code block without any arguments to the resulting text, provided it is not

already a code block. In the latter case, no additional blockifying is done. If no

input text is matched, it writes nothing to the resulting text. If the input is a list

<var,...>, every element of the list is blockified by this rule.

 It is usually used in conjunction with the regular match variable <var> to create a

code block from the <var> input text. Using code blocks instead of macros may

speed up the application significantly. In the std.fh file, blockifying is often used

for database commands and for the FOR/WHILE conditions. Look out for the

scope and visibility of variables in code blocks, as described in section LNG.2.3.3.

 #command MYCMD <arg> => myfun (<{arg}>, <"arg">)

 #command SET FILTER TO <expr> ;

 => DBSETFILTER (<{expr}>, <"expr">)

 MYCMD abc // myfun ({|| abcd}, 'abc')

 MYCMD var == "xx"

 // myfun ({|| var=='xx'}, 'var=="xx"')

 SET FILTER TO TRIM(country) $ "USA,CND,D"

 // DBSETFILTER ({|| TRIM(country) $ "USA,CND,D"}, ;

 // 'TRIM(country)$"USA,CND,D"')

 ● Logified result variable <.var.> writes .T. to the resulting text if the input

<var> text is matched; otherwise nothing or .F. . It is usually used with the one-

of-list variable to write TRUE to the resulting text if an optional clause is specified,

or FALSE otherwise.

 #command MYCMD [<arg:ON,SET>][OFF][UNSET] ;

 => myfun (<.arg.>)

 #command SET ALTERNATE [<what: ON>][OFF] [<how: NEW>] ;

 => SET (18, <.what.> , <.how.>)

 MYCMD SET // myfun (.T.)

 MYCMD ON // myfun (.T.)

 MYCMD OFF // myfun (.F.)

 MYCMD // myfun (.F.)

 SET ALTER On // SET (18, .T., .F.)

 Set Altern Off New // SET (18, .F., .T.)

3. Repeating result clauses are enclosed in square brackets [...] and instruct the

preprocessor to write the text of <var> in the resulting text as many times as it

has matches in the input text for any result variables within the clause. If there is

no matching input text, the repeating clause is not written to the result. Repeating

clauses cannot be nested. They are often used for commands which support

repeating clauses, e.g.

 #command MYSAVE <x1> TO <v1> [, <xN> TO <vN>] ;

 => REPLACE <v1> WITH <x1> [, <vN> WITH <xN>]

 #command STORE <value> TO <var1> [, <varN>] ;

PRE 14

 => <var1> := [<varN> :=] <value>

 MYSAVE 25 TO idnum

 // REPLACE idnum WITH 25

 MYSAVE "Smith" TO name, "Peter" TO first, 1 to num

 // REPLACE name WITH "Smith", ;

 // first WITH "Peter", num WITH 1

 STORE 1234 TO var1, var2, abcd

 // var1 := var2 := abcd := 1234

4. To create multi-command statements, separate each command with a

semicolon (;) which will be written to the result as a literal. As a semicolon at the

line ending is used to continue the statement into the following line, use two

semicolons in this case.

 #command XIF <cond>, <true_res>, <false_res> ;

 => IF <cond> ; <true_res> ;;

 ELSE ; <false_res> ; ENDIF

 XIF a > 0, x := a, x := 0

 // IF a > 0 ; x := a ; ELSE ; x := 0 ; ENDIF

 * which is equivalent to:

 // IF a > 0

 // x := a

 // ELSE

 // x := 0

 // ENDIF

Example:

See examples given above and study the std.fh file.

Compatibility:

Available in FS4 and C5 only. In Clipper 5.0 and 5.2, variable names <var> of the

result pattern are case-sensitive, as opposed to the case-insensivity of all other

syntax parts. In FlagShip, the whole syntax is not case-sensitive.

Related:

std.fh, #define, #translate, #xtranslate

 PRE 15

#comments, #nocomments

Syntax:

#comments
Syntax:

#nocomments

Purpose:

Enables or disables the transfer of full-line comments into the .c code produced. The

default is #comments.

Arguments:

none.

Description:

Normally, FlagShip transfers all full-line comments (*, NOTE, // or && at line beginning

and the entire line or multiline /*..*/ comments) into the .bp and C code produced for

better orientation.

When the comments are not required, e.g. to avoid comments from the #include

file, specify the #nocomments directive. To enable the transfer again, use the

#comments directive. See also the <FlagShip_dir>/include/std.fh file.

Also, when more than five subsequent empty lines occur in the .prg source, they will

be not transferred to the .bp and .c files. The synchronization of the .prg line number

is then maintained by the FlagShip #line pragma.

Example:
 #nocomments
 * this comment line is not transferred to C
 x = 5
 #comments
 // this comment line is transferred to C
 y = x

Compatibility:

Available in FlagShip only.

Related:

CMD.NOTE, * comments

PRE 16

#debug_off #debug_on

Syntax:

#debug_off

Syntax:

#debug_on

Purpose:

Temporarily disables and enables debugger. Considered only if the debugger is

active, i.e. if not the -nd or -nl switches was given. Should always apply as a pair

#debug_off ... #debug_on within the same source file.

Arguments:

none.

Description:

This directive is useful and should be used in sources inserted by the #include

directive. This is because the GUI debugger does not consider the included sources

and hence may then report or stop on an incorrect line number.

The directives may also be used to automatically skip a large part of already tested

application.

The #DEBUG_OFF directive disables debugger information so the debugger will

continue execution and ignore breaks until the debugger information is enabled again

via the #DEBUG_ON directive. If the debugger info is not active at all (e.g. when -nd

or -nl compiler switches are used), these directives are ignored.

Example:
 ? "hello world"
 #debug_off
 #include "mysource.prg" // not a good idea,see #include
 #debug_on
 ? "continuing"

Compatibility:

Available in FlagShip5 only.

Related:

compiler switches FSC.1.3, debugger FSC.5

 PRE 17

#define, #undef

Syntax:

#define <identifier> [<constant>]
#define <identifier>([<args>]) [<constant>]

Syntax:

#undef <identifier>

Purpose:

Define or remove a manifest constant or pseudo-function.

Arguments:

<identifier> is a case-sensitive name, which conforms to the FlagShip naming

convention, i.e. the <identifier> can contain any combination of letters (A..Z,

a..z), numbers (0..9) and underscore character ("_"). Special characters like -, /,

$, :, umlauts, etc. are not allowed. The <identifier> name is significant in full

length and is case sensitive. As a convention, identifiers are usually specified in

uppercase to distinguish them from other identifiers (variables, function names

etc.) used within a program. Pre-defined manifests are available in

<FlagShip_dir>/include/*.fh files (see e.g. set.fh, inkey.fh, error.fh, box.fh, etc.)

which are assigned to current source file by the #include directive.

<identifier>() is a case-sensitive name of a pseudo-function without arguments. The

parentheses must immediately follow the identifier.

<identifier>(<args>) is a case-sensitive name of a pseudo-function with a comma-

separated argument list. The parentheses must immediately follow the identifier.

The arguments <args> are case- sensitive, since the syntax is only a special

case of the regular #define directive. The argument names used are visible only

for the #define declaration.

<constant> is the replacement literal text or expression to substitute the <identifier>

whenever it is encountered. When an expression is used, enclose it in

parentheses to guarantee the precedence of later evaluation. At least one white

space character (blank or tab) separates the <identifier> from the <constant>

part.

Description:

The #define directive defines an identifier and, optionally, associates a text

replacement to it. If the <constant> text is specified, its contents will replace all

subsequent occurrences of the <identifier> within the source file (similar to

performing a search/replace in a text editor), except for the replacements in string

constants.

If the <constant> is not specified, all occurrences of <identifier> are removed by the

preprocessor. The #define directive also influences the contents of other

preprocessor directives, but you cannot change the directive name itself (like

#define define undef).

PRE 18

The #undef directive removes a previously declared <identifier> from the internal

preprocessor stack. All subsequent program lines which include the <identifier>

remain unchanged. To prevent a compiler warning which occurs when an existing

identifier is redefined, use #undef to remove an identifier before you redefine it with

#define.

Using a manifest constant instead of the constant itself increases program readability

and reduces maintenance time. Although there is some similarity between #define-

ing manifest constant and assigning the constant to a variable, using the #define

directive decreases run-time overhead and the code size required for the variable

handling.

Since the <identifier> is case-sensitive, it is a general convention to define and use it

in uppercase to distinguish it from other identifiers and variables used within a

program. Additionally, in the standard FlagShip #include files, the #define

identifiers are prefixed with a group of unique letters (e.g. K_ for keys, B_ for boxes,

SET for settings, DBS_ for database structures, F_ for files, etc.) to distinguish them

from other identifiers.

Pseudo-Functions

By using the <identifier>([<args>]) syntax, you can also define pseudo-functions

which are resolved at compile time. Pseudo-functions differ from manifest constants

in that they support arguments.

Whenever the preprocessor scans a source line and encounters a function call that

matches the pseudo-function definition, it substitutes the function call with the

replacement expression along with its arguments. In the program text, the argument

count need not exactly match the number of arguments in the #define directive.

The advantage of the pseudo-function is increased program readability, as a result

of reducing the maintenance time and the run-time overhead compared to invoking

the regular function.

You may also use the similar #xtranslate directive to avoid the case-sensitivity of

the identifier and to use optional arguments.

Compiler define's

When starting the compiler, you may also define an <identifier> and optionally the

<constant> by the -Didentifier or -Didentifier="constant" switch (see section

FSC), which is equivalent to #define directives in all the compiled programs.

Specifying the #define directive in the std.fh file has a similar effect, but affect all .prg

programs as well as subsequent compilations.

#define FlagShip

The FlagShip preprocessor automatically issues the #define FlagShip FLAGSHIP

directive (note the upper/lower case letters) at the beginning of each .prg file, similar

to the compiler switch -DFlagShip=FLAGSHIP. You may therefore distinguish

between FlagShip and Clipper source lines simply by using the #ifdef FlagShip

directive.

 PRE 19

Example:
 #ifdef FlagShip // true on UNIX
 #nocomments
 #include "inkey.fh" // INKEY() codes, e.g. K_ESC
 #define MYPATH /usr/data // comments are possible
 #define K_ABORT_TEXT "Ctrl-K"
 #else // code for DOS follows
 #include "INKEY.CH"
 #define MYPATH \usr\data
 #define K_ABORT_TEXT "Alt-D"
 #endif
 #define myMAX(arg1, Arg2) (IF(arg1 > Arg2, arg1, Arg2))
 SET Path To MYPATH // SET PATH TO /usr/data
 ? "text including MYPATH" // ? "text including MYPATH"
 WAIT "to abort the program, use " + K_ABORT_TEXT
 IF LASTKEY() == K_ESC // IF LASTKEY() == 27
 QUIT
 ENDIF
 ? myMAX(2,3) // ? (IF(2 > 3, 2, 3)) --> 3
 a = b * myMAX(a,5) // a = b * (IF(a > 5, a, 5))

 Note: do not use pre/post-increment or pre/post-decrement of
 arguments in the pseudo-functions, since they will be evaluated
 twice, e.g.

 a := 5 ; ? myMAX (a++, 0), a // 6 7
 a := 5 ; ? MAX (a++, 0), a // 5 6 (std. function)

Compatibility:

Available in FS4 and C5 only.

Related:

#ifdef, #ifndef, #translate, #xtranslate

PRE 20

#error

Syntax:

#error [<text>]

Purpose:

Generates a compiler error and displays a message on the terminal.

Options:

<text> is the literal string of the message to be displayed. Do not enclose the

message <text> in quotations unless you want them to appear as part of the

display.

Description:

The #error directive causes the compiler to terminate compilation with return code

1. If the optional <text> is specified, an error message is displayed to stderr.

Example:
 #ifndef FlagShip
 #error This program is developed for UNIX only.
 #endif

 #ifdef FINAL
 #ifdef TEST
 #error Remove #define TEST for the final compilation
 #endif
 #endif

Compatibility:

Available in FS4 and C5 only.

Related:

#stdout, #ifdef, #ifndef

 PRE 21

#ifdef, #ifndef ... #else ... #endif

Syntax:

#ifdef <identifier>
any valid statement ...

[#else
any valid statement ...]

#endif

Syntax:

#ifndef <identifier>
any valid statement ...

[#else
any valid statement ...]

#endif

Purpose:

Compiles a section of code if an identifier is defined or not defined.

Arguments:

<identifier> is the case-sensitive name of a definition whose existence is being

verified.

Description:

#ifdef...#endif performs conditional compilation when the identifier is defined by

using the #define directive or the -D compiler switch. The optional #else directive

specifies the code to be compiled if the <identifier> is not defined.

#ifndef...#endif performs a conditional compilation when the identifier is not

defined. The optional #else directive specifies the code to compile if <identifier> is

defined.

The #endif directive ends the conditional compilation block.

Conditional compilation is particularly useful when maintaining many different

versions of the same program.

To create portable programs for DOS or Windows/Unix, #ifdef FlagShip directive

is the most comfortable way of observing the slight differences between these two

systems.

Pre-defined preprocessor compiler directives (case sensitive):

#ifdef FlagShip always true in FlagShip

#ifdef FlagShip5 true with FlagShip 5.x and newer

#ifdef FlagShip6 true with FlagShip 6.x and newer

#ifdef FlagShip7 true with FlagShip 7.x and newer

#ifdef FlagShip8 true with FlagShip 8.x and newer

#ifdef FS_WIN32 true with FlagShip for MS-Windows 32bit or 64bit

#ifdef FS_WIN64 true with FlagShip for MS-Windows 64bit

PRE 22

#ifdef FS_BCC32 true with FlagShip for MS-Windows BCC32 32bit

#ifdef FS_LINUX true with FlagShip for Linux 32bit or 64bit

#ifdef FS_LINUX32 true with FlagShip for Linux 32bit

#ifdef FS_LINUX64 true with FlagShip for Linux 64bit

#ifdef VFS_FS2TOOLS true with available FS2 Toolbox

Example:

 *** test.prg
 #ifdef FlagShip
 #include "fspreset.fh"
 #include "inkey.fh"
 #stdout Compiling FlagShip specific
 #else
 #include "INKEY.CH"
 #stdout Compiling DOS specific
 #endif
 #define TEST // or use: FlagShip test.prg -DTEST
 // later

 #ifdef FS_LINUX
 RUN ("ls -la * | less")
 REFRESH
 #else
 RUN ("DIR *.* | more")
 #endif
 #ifdef TEST
 ? "The current directory is", CURDIR()
 password = "MyTest"
 ? "The test password is", password
 WAIT
 #stdout The test option IS ACTIVE now
 #else
 #stdout Compiling w/o test option
 #endif
 CLEAR SCREEN
 #ifndef TEST
 ACCEPT "Please enter your password:" TO password
 IF EMPTY(password)
 QUIT
 ENDIF
 #endif

Compatibility:

Available in FS4 and C5 only.

Related:

#define, section FSC

 PRE 23

#include

Syntax:

#include "<filename>"

Purpose:

Includes a source or header file into the current source file.

Arguments:

<filename> specifies the name (optionally preceded by a path) of another source or

header file to be inserted at the current position in the source file. The <filename>

must be enclosed in quotation marks ".." or '..'.

FlagShip will try to infer the #include "filename" if it is not able to find it as given,

using the following search algorithm:

1. Look for the file name as given (by e.g. #include "File.Ext") in the:

 a. current directory,

b. path given by the -I switch (if specified),

c. /usr/include directory.

2. Repeat step 1.a to 1.c with "file.ext" (in lowercase),

3. Repeat step 1.a to 1.c with "FILE.EXT" (in uppercase)

Note: The FS_SET("lower", "pathlower") etc. has no effect on the preprocessor, since

the FS_SET() function is an executable statement invoked at run-time.

Description:

#include inserts the contents of the specified file in place of the directive in the

source file. In FlagShip the convention is that header files with .fh extensions should

contain only preprocessor directives and external declarations.

Header files often contain general purpose constants, such as the manifests for key

values in "inkey.fh", file attributes in "fileio.fh" or user-defined #define(s). Including

these header files in the .prg source makes their definitions automatically available

in it.

The scope of directives from the included header file is the current .prg program file.

The #include directives may be nested up to a depth of 512 levels. That means, one

#include file may include another one, which includes another file, etc. It is a good

programming practice to omit files already included by using the #define and #ifdef

directives in order to avoid infinite include loops.

std.fh, set.fh

When the compiler switch -nI is not used, FlagShip automatically includes the "std.fh"

file at the beginning of each .prg program. These standard header files (by default

located in <FlagShip_dir>/ include) contain the definitions of all FlagShip commands

and standard functions. It also automatically includes the "set.fh" and "inkey.fh" files,

if they are not yet included.

PRE 24

If changes of the std.fh or set.fh file contents' are desired, you have two basic choices:

a. Create an additional header file, e.g. "stdadd.fh" containing all changes and

additions required and insert the line #include "stdadd.fh" at the end of the

default std.fh file. Since directives specified later have higher priority, they will

override standard directives given in std.fh and set.fh.

b. Copy the <FlagShip_dir>/include/std.fh file to a new name (e.g. mystd.fh), make

the changes and compile with the -nI=mystd.fh option.

The first is the better solution, since your additions will not be affected by the likely

changes to the standard header files in a new FlagShip release.

Note: it is usually not a good idea to #include .prg files, since it would be hard to

debug it (the line-numbering of every included file starts with 1), and the automatically

created code blocks (e.g. for @..GET..) may get confused (the line number is a part

of these auto codeblock names) - linker error may result. Better is either to use SET

PROCEDURE TO.. or to compile separately to object, or simply add these .prg sources

to FlagShip command line at compilation.

Standard header files

In addition to the std.fh and set.fh described above, FlagShip provides a number of

header files containing manifest constants for common operations. Refer to sections

GEN, CMD, FUN and look out for *.fh files in the default installation directory

<FlagShip_dir>/include (e.g. ls -l /usr/local/Flag*/include/*.fh).

Example:
 *** test.prg
 #include "inkey.fh"
 #ifndef _MY_INCLUDED
 #include "myinclude.fh"
 #define _MY_INCLUDED
 #endif
 LOCAL key, ok

 displaymenu ()
 key = INKEY()
 ok = perform_menu (key)

 FUNCTION perform_menu (key)
 DO CASE
 CASE key == K_ESC // Escape key, 27
 QUIT
 CASE key == K_PGUP // PgUp key, 18
 SKIP -1
 CASE key == K_PGDN // PgDn key, 3
 SKIP 1
 CASE // other keys
 OTHERWISE
 RETURN .F.
 ENDCASE
 RETURN .T.

 PRE 25

Compatibility:

Available in FS4 and C5 only. To use the Clipper extensions for FlagShip *.fh files in

an unmodified source code, make in Linux a link e.g.

 ln <FlagShip_dir>/include/inkey.fh inkey.ch

In extreme cases, you may use the original CA/Clipper *.CH include files by copying

them to your working directory, with the exception of "STD.CH", "FILEIO.CH" and

"ERROR.CH". You must use "std.fh", "fileio.fh" and "error.fh" which are FlagShip

specific, but are backward compatible to Clipper.

Related:

#define, section FSC

PRE 26

#stdout

Syntax:

#stdout [<text>]

Purpose:

Displays a message on the terminal.

Options:

<text> is the literal string of the message to be displayed. Do not enclose the

message <text> in quotations unless you want them to appear as part of the display.

Description:

The #stdout directive causes the preprocessor to display a message on stderr, the

default device for compiler messages.

If the compiler stderr output is re-routed to a file, e.g.

 FlagShip my*.prg -q -Mmymain 2>protocoll.txt

the #stdout message is also printed to that file.

Example:
 ** test.prg
 #ifdef FlagShip
 #stdout Compiling on UNIX using FlagShip
 #endif

 #ifdef TEST_ONLY
 #stdout "TEST_ONLY" directive is used
 #endif

Compatibility:

Available in FS4 and C5 only.

Related:

#error, #define, #ifdef, #ifndef

 PRE 27

#translate, #xtranslate

Syntax:

#translate <pattern> => <result>
#xtranslate <pattern> => <result>

Purpose:

Specifies a user defined translation directive.

Arguments:

<pattern> is the input which the text should match. The <pattern> consists of literal

symbols (keywords, clauses, etc.) and optional variables, enclosed in angle

brackets, e.g. <var>, confirming to the FlagShip variables naming convention.

The entire entry is not case-sensitive.

=> This equals sign immediately followed by a greater than sign is a literal part of the

syntax and separates the <pattern> from the <result>.

<result> is the text to be produced if a portion of the input text matches the <pattern>.

It may include literal constants, clauses and result variables <var> enclosed in

angle brackets. The whole <result> part of the syntax is optional, the resulting

expression must comply with a valid FlagShip syntax. If no <result> is specified,

an empty line is produced.

Description:

The #[x]translate directive provides a way to re-define a part of a program

statement. #[x]translate is similar to #[x]command, but it also matches input text

that is not a complete statement, while #[x]command matches only if input text is a

complete statement. In general, #[x]command is used for most user-defined-

commands, while #[x]translate for special cases. #[x]translate is also similar

to the #define directive, but is more powerful and not case- sensitive.

The #translate directive supports the abbreviation of the matching pattern (keyword

and clauses) with up to four characters, while #xtranslate only translates patterns

exactly as given (but case insensitive). All other rules apply to both directives.

You may re-define standard [x]translate's from std.fh or stdfoxpro.fh by your own (e.g.

in the .prg or your own .fh file), the last definition is the most current (lifo order = last-

in-first-out).

Pattern: Result:

Since all the rules of #[x]command also apply to #[x]translate, refer to section

#command for a description of the <pattern> and <result> parts.

Example:
 #translate AllTrim(<arg>) => LTRIM(RTRIM(<arg>))
 #translate MYMAX (<max>, <min>) ;
 => (IF (<max> >= <min>, <max>, <min>))
 #translate MYMIN (<max>, <min>) ;
 => (IF (<min> <= <max>, <min>, <max>))
 #translate MAXunknown (<max>, <min>) ;

PRE 28

 => (IF ((VALTYPE(<max>)+VALTYPE(<min>))=="NN", ;
 MAX (<max>, <min>), ;
 IF (VALTYPE(<max>)=="N", <max>, <min>)))
 #translate MAX3 (<arg1>, <arg2>, <arg3>) ;
 => (IF (<arg1> >= <arg2>, MAX (<arg1>,<arg3>), ;
 MAX (<arg2>,<arg3>)))

 LOCAL a, b, c
 a = VAL (alltr (" 1234 ")) // 1234
 b = MAXU (a, c) // 1234, no RTE
 c = myMAX (a, -b) +1 // 1235
 c = myMIN (a, -b) // -1234
 d = MAX3 (a, c, b) // 1235

 Note: do not use pre/post-increment or pre/post-decrement of
 arguments in these pseudo-functions, since they will be evaluated
 twice, e.g.

 a := 5 ; ? myMAX (a++, 0), a // 6 7
 a := 5 ; ? MAX (a++, 0), a // 5 6 (std. function)

Compatibility:

Available in FS4 and C5 only. In Clipper 5.0 and 5.2, variable names <var> of the

result pattern are case-sensitive, as opposed to the case-insensitivity of all other

syntax parts. In FlagShip, the whole syntax is not case-sensitive.

Related:

std.fh, #define, #command, #xcommand

 PRE 29

Index

#Cinline ... PRE-7
#command PRE-8
#comments PRE-15
#debug_on/off PRE-16
#define .. PRE-17
#else.. PRE-21
#endCinline PRE-7
#endif .. PRE-21
#error... PRE-20
#ifdef ... PRE-21
#ifndef ... PRE-21
#include ... PRE-23
#nocomments PRE-15
#stdout .. PRE-26
#translate PRE-27
#undef ... PRE-17
#xcommand PRE-8
#xtranslate PRE-27

.

.bp file ... PRE-2

C

Clipper
- difference

-- preprocessor PRE-6

F

FlagShip
- preprocessor

-- directives PRE-2
-- translation PRE-2

M

Manifest constant PRE-17

P

Preprocessor
- directives PRE-2

-- #Cinline PRE-7
-- #command PRE-8
-- #comments PRE-15
-- #debug_on/off PRE-16
-- #define PRE-17
-- #else PRE-21
-- #endCinline PRE-7
-- #endif PRE-21
-- #error PRE-20
-- #ifdef PRE-21
-- #ifndef PRE-21
-- #include PRE-23
-- #nocomments PRE-15
-- #stdout PRE-26
-- #translate PRE-27
-- #undef PRE-17
-- #xcommand PRE-8
-- #xtranslate PRE-27
-- difference to Clipper PRE-6

Pseudo-function PRE-17

S

std.fh file .. PRE-2
stdfoxpro.fh file PRE-2

PRE 30

Notes

 PRE 31

multisoft Datentechnik
Schönaustr. 7
D-84036 Landshut

http://www.fship.com
sales@multisoft.de
support@flagship.de

	fsman_PRE_0.pdf
	Cross-Compatible to Unix, Linux and MS-Windows
	Manual release: 8.1
	Copyright
	Trademarks

	fsman_PRE.pdf
	PRE: FlagShip Preprocessor Directives
	1. Overview
	1.1 Notation
	1.2 Case-Sensitivity
	1.3 Immediately Executed Directives
	1.4 Translation Directives
	1.5 Priority of Translation Directives
	1.6 Examining the Results
	1.7 Example of Use
	1.8 Difference to Clipper

	#Cinline ... #endCinline
	#command, #xcommand
	#comments, #nocomments
	#debug_off #debug_on
	#define, #undef
	#error
	#ifdef, #ifndef ... #else ... #endif
	#include
	#stdout
	#translate, #xtranslate
	Index
	Notes

	fsman_cover_back_21x24.pdf

